FINAL REPORT

As Required by

THE ENDANGERED SPECIES PROGRAM

TEXAS

Grant No. E - 57

Endangered and Threatened Species Conservation

Conservation Genetics of the Black-capped Vireo (*Vireo atricapilla*)

Prepared by:

Bob Zink and Andy Jones

Robert Cook Executive Director

Matt Wagner Program Director, Wildlife Diversity Mike Berger Division Director, Wildlife

December 20, 2006

FINAL REPORT

STATE: Texas **GRANT NUMBER:** <u>E - 57</u>

GRANT TITLE: Conservation Genetics of the Black-capped Vireo (Vireo atricapilla)

REPORTING PERIOD: 1 October 2004 to 30 September 2006

OBJECTIVE(S):

- 1) To determine from mitochondrial DNA analysis whether the Black-capped Vireo consists of more than one Distinct Population Segment (DPS),
- 2) To assess variability and gene flow among populations, or DPSs, and
- 3) To assess spatio-temporal patterns of colonization in Mexico, Texas, and Oklahoma

Significant Deviations:

Samples of Dwarf Vireo (V. nelsoni) were not obtained; no recent specimens exist in museums and none were captured for this study. This did not affect results (please see Attachment A).

Summary Of Progress:

Please see Attachment A.

Location: Several sites in Oklahoma, Texas, and Mexico.

Cost:

Prepared by: <u>Craig Farquhar</u>

Date: December 20, 2006

Approved by: _____ Date: _____ Date: _____

1 2	ATTACHMENT A FINAL REPORT FOR E-57
3	PI Robert M. Zink, University of Minnesota
4	19 December 2006
5	
6	Significant Deviation
7	We were unable to locate and tissues of Dwarf Vireo (V. nelsoni) which has been
8	proposed as the sister taxon of Black-capped Vireo ("probably conspecific" Phillips 1991,
9	p. 195); no tissues are known to exist in any natural history museum (A. T. Peterson,
10	pers. comm.). However, this does not affect the results of this study because there was no
11	phylogenetic structure to the haplotype tree; hence, rooting could not change the outcome
12	or interpretation.
13	
14	CONSERVATION GENETICS OF THE BLACK-CAPPED VIREO
15	Abstract
16	The Black-capped Vireo (Vireo atricapilla) breeds in habitat fragments in
16 17	
	The Black-capped Vireo (Vireo atricapilla) breeds in habitat fragments in
17	The Black-capped Vireo (<i>Vireo atricapilla</i>) breeds in habitat fragments in Oklahoma, Texas, Coahuila, Nuevo Leon, and Tamaulipas, and is endangered throughout
17 18	The Black-capped Vireo (<i>Vireo atricapilla</i>) breeds in habitat fragments in Oklahoma, Texas, Coahuila, Nuevo Leon, and Tamaulipas, and is endangered throughout its range due to habitat destruction and fragmentation; population declines are accelerated
17 18 19	The Black-capped Vireo (<i>Vireo atricapilla</i>) breeds in habitat fragments in Oklahoma, Texas, Coahuila, Nuevo Leon, and Tamaulipas, and is endangered throughout its range due to habitat destruction and fragmentation; population declines are accelerated by cowbird parasitism. We used mitochondrial DNA (mtDNA) sequences from the ND2
17 18 19 20	The Black-capped Vireo (<i>Vireo atricapilla</i>) breeds in habitat fragments in Oklahoma, Texas, Coahuila, Nuevo Leon, and Tamaulipas, and is endangered throughout its range due to habitat destruction and fragmentation; population declines are accelerated by cowbird parasitism. We used mitochondrial DNA (mtDNA) sequences from the ND2 gene to examine population structure. Feather samples from 108 individuals were taken,

24	global distribution and no described subspecific variation. Mismatch distributions were
25	unimodal, suggesting a recent population bottleneck, likely during the Pleistocene. This
26	pattern of recent population growth is repeated when analyzing southern and northern
27	samples separately, precluding inferences of Pleistocene movements. We suggest that
28	recent isolation of populations is of insufficient duration and intensity to cause genetic
29	differentiation in neutral markers in this species. Lack of geographic structure in an
30	endangered bird in North America is a fairly common finding in the literature; we discuss
31	the implications of this result to conservation and management priorities.
32	

- 33 34 Key words: Endangered Species Act, mtDNA, phylogeography

INTRODUCTION

36 The Black-capped Vireo (Vireo atricapillus) is a small passerine that breeds in 37 scrubby habitats in the states of Oklahoma and Texas in the United States, and Coahuila, 38 Nuevo Leon, and Tamaulipas in Mexico. These birds migrate southwest to the lowlands 39 along the Pacific slope of Mexico in winter. This species was formerly more widespread, 40 occurring regularly in Nebraska and Kansas until the early 1900s. Black-capped Vireos 41 have been widely studied (e.g. Grzybowski 1995). Attention has been focused on the Black-capped Vireo because it displays several interesting features. This species has an 42 43 exceedingly large repertoire of song syllables, high even among the Vireonidae. Further, 44 Black-capped Vireos show sexual dichromatism and delayed plumage maturation 45 (second-year males are visibly distinct from after-second-year males); both of these 46 characteristics are unusual among the Vireonidae (Grzybowski 1995). 47 Black-capped Vireo populations have declined recently due primarily to habitat 48 loss and cowbird parasitism. As a result of this decline this species is listed as 49 endangered by the United States Fish and Wildlife Service. Their specific habitat is 50 dominated by oaks or junipers and is declining at a fairly high rate; this habitat is also 51 home to the Federally endangered (in the United States) Golden-cheeked Warbler 52 (Dendroica chrysoparia). Management efforts have focused on minimizing effects from 53 the cowbirds that parasitize them, and establishment and maintenance of appropriate 54 habitat (Grzybowski 1995).

55 Despite the attention paid to this species for various aspects of its natural history, 56 its evolutionary history is not well known. Conservation efforts should be informed with 57 genetic data whenever possible, and for a species that exists in fragmented populations

58 documentation of cryptic lineages or other population subdivision is important when 59 prioritizing land conservation and management efforts. The Black-capped Vireo was the 60 subject of an allozyme analysis (Fazio et al. 1992); from limited sampling (three Texas 61 populations and one Oklahoma population) they found significant population 62 differentiation. However, their data included two loci that were under selection, biasing 63 their conclusions. 64 In this paper we include samples from all states where Black-capped Vireos are extant, present findings on population differentiation in this species, and discuss how 65 66 these findings are relevant to management goals in endangered species. 67 **METHODS**

68 Sampling

69 Feathers were collected from live birds in the states of Oklahoma and Texas 70 (United States of America) and Coahuila, Tamaulipas, and Nuevo Leon (Mexico) during 71 the breeding seasons of 2002-2005. Exact locations are detailed in Appendix 1. Permits 72 for feather sampling are detailed in the Acknowledgments section. Voucher specimens 73 were not obtained due to conservation issues across the range of this taxon. The 74 following outgroup sequences were taken from Genbank: Vireo olivaceus (AY136614), 75 V. solitarius (AY030137), V. gilvus (AY030135), V. latimeri (AF281020), V. leucophrys 76 (AY030134), and V. plumbeus (AY030136). We were unable to locate and tissues of 77 Dwarf Vireo (V. nelsoni) which has been proposed as the sister taxon of Black-capped 78 Vireo ("probably conspecific" Phillips 1991, p. 195); no tissues are known to exist in any 79 natural history museum (A. T. Peterson, pers. comm.). 80 Laboratory Techniques

81	Feathers were sent to RMZ's laboratory at the University of Minnesota. Two to
82	three contour feathers (or, occasionally only a single rectrix was available) were then
83	extracted using a Qiagen DNeasy Tissue Extraction kit (Qiagen Inc., Valencia,
84	California), following manufacturer's protocols except that the initial addition of Buffer
85	ATL and Proteinase K was supplemented with 30 uL of DTT (Dithiothreitol) and
86	incubated at 55° C for 24h. Extracts were amplified with polymerase chain reactions
87	(PCR) with the following conditions: 15m at 94°, 35 cycles of [45s at 94°, 45s at 50°,
88	and 90s at 72°], 5m at 72°, and then held at 4°. The mitochondrial ND2 (NADH
89	dehydrogenase subunit 2) gene was amplified in all individuals in either two or three
90	pieces, depending on how degraded the DNA was. Primers are listed in Table 1; three
91	were designed by MCW for this study. These PCR products were then cleaned with a
92	QIAquick PCR cleaning kit, and submitted in 6 uL sequencing reactions to the
93	BioMedical Genomics Center at the University of Minnesota. Sequences were aligned
94	with Sequencher 4.1.1 (Gene Codes Corp., Ann Arbor, Michigan). Mitochondrial origin
95	was confirmed in Sequencher by inspecting for unexpected stop codons and insertions or
96	deletions.

97 Population Genetic Analyses

Sequences were reduced to unique haplotypes, and a neighbor-joining tree
produced to depict population subdivision, using the program DnaSP 4.10 (Rozas et al.
2003). Sequences from all individuals were analyzed for patterns of population size
changes over time using mismatch distributions (Rogers and Harpending 1992). Samples
were pooled for mismatch analyses into three groups: Oklahoma (10 individuals), Texas
(80), and Mexico (16), with significance judged by Tajima's D (Tajima 1989) and Fu's Fs

104 (Fu 1997). Sequences with more than 5% missing data were deleted from mismatch105 analyses.

8

RESULTS 106 107 We obtained 1041 base pairs, representing the entire mitochondrial ND2 gene 108 from 108 sampled Black-capped Vireos. The 39 variable sites (22 parsimony 109 informative) resolved 27 unique haplotypes, with a haplotype diversity of 0.866. No stop 110 codons or indels were observed. 111 A neighbor-joining phylogeny of haplotypes demonstrated no major phylogenetic 112 breaks, and no visible geographic structuring within the topology (Figure 1). Further, no 113 haplotypes are geographically restricted. The most common haplotype occurred at all 114 sampled localities. Intraspecific variation was low, with an average of 3.41 differences 115 between haplotypes (0.328% sequence divergence, uncorrected). 116 Two of the 108 sampled individuals were removed for population genetic 117 analyses due to high levels of missing data. Nucleotide diversity (π) for all samples 118 together was 0.0035; pooled values were: Mexico $\pi = 0.0046$, Texas $\pi = 0.0037$, and 119 Oklahoma $\pi = 0.00256$. Mismatch distributions were unimodal when all samples were 120 combined (Tajima's D: -0.08562, p = 0.00700; Fu's Fs: -0.28435, p < 0.00001) and 121 ragged for the Oklahoma (Tajima's D: -0.04127, p = 0.653; Fu Fs = 0.28764, p = 122 0.47879) and Mexico (Tajima's D: -0.10823, p = 0.11900; Fu's Fs: 0.04543, p = 0.69000). 123 Texas samples were significant for only Fu's Fs (Tajima's D: -0.0054, p = 0.04600; Fu's 124 Fs: -0.22106, p = 0.00100).

125

- DISCUSSION
 - 8

127	The combination of an intraspecific haplotype phylogeny without major
128	topological or geographic structure, and an overall unimodal mismatch distribution,
129	describes the Black-capped Vireo as a monotypic species that has been expanding in
130	recent history. This seemingly violates expectations for a patchily distributed species
131	with well documented declines across its range. However, very recent effects might not
132	leave a detectable signature on the mitochondrial genome, or any neutral molecular
133	marker. Furthermore, the ragged mismatch distribution for the Mexican and Oklahoma
134	samples suggests that there might be regions where the species has not been increasing.
135	The possibility for a south to north expansion is consistent with this observation.
136	Fazio et al. (2004) reported a notable difference at the PNP locus, in which
137	samples from Fort Hood (Texas) and Wichita Mtns (Oklahoma) shared a different
138	common allele from their samples from Kickapoo Caverns (Texas) and Kerr WMA
139	(Texas). This locus, as well as frequency differences at other loci, resulted in an
140	unrooted UPGMA phenogram that separated these two pairs of samples. This is unusual
141	for a passerine bird, especially given that the samples were relatively close
142	geographically (Zink and Remsen 1986). No such division, however, was apparent in the
143	rooted mtDNA haplotype phylogeny (Fig. 2). The disparity in the two results is
144	problematic given that coalescence theory predicts that divergence in mtDNA will
145	precede that in nuclear genes (e.g., allozymes) because of the former marker having $\frac{1}{4}$ the
146	effective population size (Moore 1995). Because the allozyme results effectively hinge
147	on a single locus (PNP), it would be prudent to investigate other nuclear markers.
148	Importantly, sequences of nuclear genes, rather than frequency based approaches such as

149 microsatellites, are vastly preferable given that more sophisticated coalescence

150 approaches can be used to analyze the data.

151 Resolution of this apparent conflict between molecular markers could preclude 152 effective management. If there really are two groups of populations with different 153 histories, they would qualify potentially as distinct population segments (DPS) under the Endangered Species Act (USFW/NMSF 1996). If, however, the mtDNA results prove 154 155 correct, there is no evidence for multiple DPSs, at least using genetic criteria. We instead 156 recovered the genetic signature of widespread historical gene flow despite low modern 157 gene flow, and our results demonstrate that maintaining large populations in several 158 locations could conserve genetic diversity.

- 159
- 160

ACKNOWLEDGMENTS

161 Laboratory assistance was provided by F. Keith Barker. We are grateful to the 162 field efforts to collect feathers in all states, including Kelly Barr and Denise Lindsay 163 (University of Louisiana) Mario Guerrero Madriles, Adriana Nuñez Gonzali, Oscar 164 Ballesteros Medrano (UANL), John P. Maresh, Victor W. Fazio III, Joseph A. 165 Grzybowski. This project was funded by Texas Parks and Wildlife Department and 166 University of Minnesota. 167 Feathers were collected under the following permits: SPR-1090-299 (Texas) and 168 USFWS 21999 to the University of Louisiana. Texas Endangered Species Permit to 169 Texas Parks and Wildlife Department #TE814933-2. Master Banding Permit #22365 to 170 CCF. Feathers imported from Mexico by CCF with Declaration for Importation or 171 Exportation of Fish or Wildlife permit #IE804570-1, the Import permit used for the

- 172 Declaration permit: issued to Rob Powell, #MA064189-1. Mexican feather collection
- 173 permit Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT): #12160
- 174 issued to JIGR.
- 175

176	LITERATURE CITED
177	
178	Drovetski, S. V., R. M. Zink, I. V. Fadeev, E. V. Nesterov, E. A. Koblik, Y. A. Red'kin
179	and S. Rohwer. 2004b. Mitochondrial phylogeny of Locustella and related
180	genera. Journal of Avian Biology 35:105-110.
181	Fazio, V. W., III, D. B. Miles, and M. W. White. 2004. Genetic differentiation in the
182	endangered black-capped vireo. Condor 106: 377-385.
183	Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth,
184	hitchhiking and background selection. Genetics 147: 915-925.
185	Grzybowski, J. A. 1995. Black-capped Vireo (Vireo atricapillus), In The Birds of North
186	America, No. 181 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences,
187	Philadelphia, and The American Ornithologists' Union, Washington, D. C.
188	Hackett, S. J. 1996. Molecular phylogenetics and biogeography of tanagers in the genus
189	Ramphocelus (Aves). Molecular Phylogenetics and Evolution 5:368–382.
190	Moore, W. S. 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene
191	trees versus nuclear-gene trees. Evolution 49, 718-726.
192	Phillips, A. R. 1991. The Known Birds of North and Middle America. Part II.
193	[Published privately] Denver, CO.
194	Rogers, A. R. and H. Harpending. 1992. Population growth makes waves in the
195	distribution of pairwise differences. Molecular Biology and Evolution 9: 552-
196	569.

197	Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA
198	polymorphism analyses by the coalescent and other methods. Bioinformatics 19
199	2496-2497.

- Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA
 polymorphism. Genetics 123: 585-595.
- 202 United States Fish and Wildlife Service and National Marine Fisheries Service
- 203 (USFWS/NMFS). 1996. Policy regarding the recognition of distinct vertebrate
- 204 population segments under the Endangered Species Act. Fed. Reg. 61FR4722.
- 205 Zink R. M., and J. V. Remsen, Jr. 1986. Evolutionary processes and patterns of
- 206 geographic variation in birds. Current Ornithology 4:1–69.

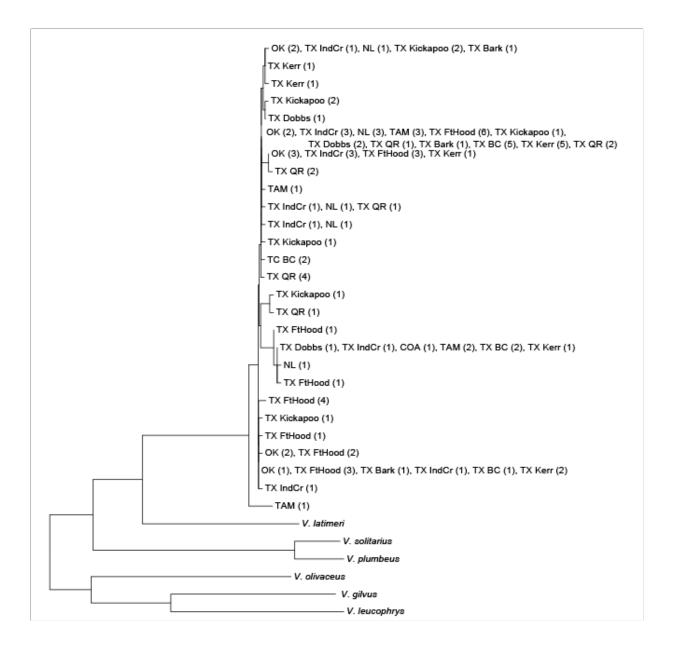

TABLES

TABLE 1.	Primers	used in	this	study.	

Primer Name	Sequence	Author
L5215	5'-TATCGGGCCCATACCCCGAATAT-3'	Hackett 1996
H1064	5'-CTTTGAAGGCCTTCGGTTTA-3'	Drovetski et
al. 2004		
L347	5'-CCATTCCACTTCTGATTCCC-3'	Drovetski et
al. 2004		
H5578	5'-CCTTGAAGCACTTCTGGGAATCAGA-3'	Hackett 1996
VA-ND2-L1	5'-CTAGTACCATTCCACTTCTGATTC-3'	MCW, this
study		
VA-ND2-L2	5'-CCTAACCTTCAACTCAATCAAAAC-3'	MCW, this
study		
VA-ND2-H1	5'-GTTTTGATTGAGTTGAAGGTTA-3'	MCW, this
study		

FIGURES

FIGURE 1. Neighbor-joining tree depicting relationships among sampled haplotypes. Haplotypes are designated with standardized state abbreviations, the number of individuals in parentheses, and, where known, an abbreviated locality name (see Appendix 1). **FIGURE 2.** Graphs of all pairwise comparisons of sampled individuals (mismatch distributions). A: all samples (n=106), B: Oklahoma samples (n=10), C: Texas samples (n=80), D: Mexico samples (n=16). Values of Tajima's D are significantly negative for A and not significant for comparisons B, C, and D; Fu's Fs values are significantly negative for A and C but not B and D.

Individual #	Band or Field #	Country	State	County	Locality
VA001	55791	USA	Oklahoma	Comanche	Fort Sill
VA002	55798	USA	Oklahoma	Comanche	Fort Sill
VA003	55799	USA	Oklahoma	Comanche	Fort Sill
VA004	55794	USA	Oklahoma	Comanche	Fort Sill
VA005	55793	USA	Oklahoma	Comanche	Fort Sill
VA006	55782	USA	Oklahoma	Comanche	Fort Sill
VA007	55779	USA	Oklahoma	Comanche	Fort Sill
VA008	55769	USA	Oklahoma	Comanche	Fort Sill
VA009	55775	USA	Oklahoma	Comanche	Fort Sill
VA010	55772	USA	Oklahoma	Comanche	Fort Sill
	00112	00/1			Chandler Independence Creek Preserve or
VA011	1770-34980	USA	Texas	Terrell	TNC property nearby
					Chandler Independence Creek Preserve or
VA012	1770-34981	USA	Texas	Terrell	TNC property nearby
1/10/10			-	- "	Chandler Independence Creek Preserve or
VA013	1770-34982	USA	Texas	Terrell	TNC property nearby
VA014	1770-34991	USA	Texas	Terrell	Chandler Independence Creek Preserve or TNC property nearby
VA014	1770-34991	034	Texas	Terreir	Chandler Independence Creek Preserve or
VA015	1760-75160	USA	Texas	Terrell	TNC property nearby
VA017	no band	Mexico	Nuevo Leon	n/a	unknown
VA018	1350-74991	Mexico	Nuevo Leon	n/a	unknown
VA019	2070-98642	Mexico	Nuevo Leon	n/a	unknown
VA020	2070-98643	Mexico	Nuevo Leon	n/a	unknown
VA021	1350-49918	Mexico	Nuevo Leon	n/a	unknown
VA021	1350-49919	Mexico	Nuevo Leon	n/a	unknown
VA022	2400-45320	USA	Texas	Coryell	Ft. Hood
VA024	2400-45321	USA	Texas	Coryell	Ft. Hood
VA024	2400-45322	USA	Texas	Coryell	Ft. Hood
VA026	2320-60041	USA	Texas	Coryell	Ft. Hood
VA020	2400-45323	USA	Texas	Coryell	Ft. Hood
VA027 VA028	2400-45325	USA	Texas	Coryell	Ft. Hood
VA029	2400-45325	USA	Texas	Coryell	Ft. Hood
VA030	2400-45327	USA	Texas	Coryell	Ft. Hood
VA030	2360-63136	USA	Texas	Coryell	Ft. Hood
VA031	2360-63137	USA	Texas	Coryell	Ft. Hood
VA033	2360-63138	USA	Texas	Coryell	Ft. Hood
VA033	2360-63141	USA	Texas	Coryell	Ft. Hood
VA034 VA035	2360-63142	USA	Texas	Coryell	Ft. Hood
VA035	2360-63142	USA	Texas	Coryell	Ft. Hood
VA036	2360-63144	USA	Texas	Coryell	Ft. Hood
VA037 VA038	2360-63145	USA	Texas	Coryell	Ft. Hood
	2340-14595	USA			Ft. Hood
VA039 VA040		USA	Texas	Coryell	
	2360-63146		Texas	Coryell	Ft. Hood
VA041	2400-45483	USA	Texas	Coryell	Ft. Hood
VA042	2360-63147	USA	Texas	Coryell	Ft. Hood

		I	•	1	1
VA043	2070-98656	USA	Texas	Edwards	Kickapoo Cavern State Park
VA044	2070-98658	USA	Texas	Edwards	Kickapoo Cavern State Park
VA045	2070-98661	USA	Texas	Edwards	Kickapoo Cavern State Park
VA046	2070-98662	USA	Texas	Edwards	Kickapoo Cavern State Park
VA047	2070-98668	USA	Texas	Edwards	Kickapoo Cavern State Park
VA048	2070-98679	USA	Texas	Edwards	Kickapoo Cavern State Park
VA049	2070-98680	USA	Texas	Edwards	Kickapoo Cavern State Park
VA050	2070-98681	USA	Texas	Edwards	Kickapoo Cavern State Park
VA051	2070-98682	USA	Texas	Edwards	Kickapoo Cavern State Park
VA052	2070-98683	USA	Texas	Edwards	Kickapoo Cavern State Park
VA053	JPM1	USA	Texas	Edwards	Dobbs Mtn.
VA054	JPM2	USA	Texas	Edwards	Dobbs Mtn.
VA055	JPM3	USA	Texas	Edwards	Dobbs Mtn.
VA056	JPM4	USA	Texas	Edwards	Dobbs Mtn.
VA050 VA057	JPM5	USA	Texas	Somervell	Quail Ridge
VA057 VA058	JPM6	USA	Texas	Taylor	Camp Barkeley
VA058 VA060	JPM8	USA	Texas	Taylor	Camp Barkeley
		USA			
VA061 VA062	JPM9 JPM10	USA	Texas Texas	Taylor Terrell	Camp Barkeley
					Independence Creek
VA063	JPM11	USA	Texas	Terrell	Independence Creek
VA065	JPM13	USA	Texas	Terrell	Independence Creek
VA066	JPM14	USA	Texas	Terrell	Independence Creek
VA068	JPM16	USA	Texas	Terrell	Independence Creek
VA069	JPM17	USA	Texas	Terrell	Independence Creek
VA071	JPM19	USA	Texas	Terrell	Independence Creek
VA090	2370-56103	Mexico	Nuevo Leon	n/a	Rcho Minas Viejas, Villaldama
VA091	2370-56104	Mexico	Nuevo Leon	n/a	Rcho Minas Viejas, Villaldama
VA092	2370-56105	Mexico	Nuevo Leon	n/a	Rcho Minas Viejas, Villaldama
VA093	2370-56106	Mexico	Tamaulipas	n/a	Ejid. Los Arrieros, Palmillas, Tamaulipas
VA094	2370-56107	Mexico	Coahuila	n/a	Pajaros Azules, Coahuila
VA095	2370-56112	Mexico	Tamaulipas	n/a	Carretera del Rcho.Capulin a Bustamante, Tamaulipas
					Carretera del Rcho.Capulin a Bustamante,
VA096	2370-56113	Mexico	Tamaulipas	n/a	Tamaulipas
VA097	2370-56114	Mexico	Tamaulipas	n/a	Carretera a Miquihuana km 9
VA098	2370-56115	Mexico	Tamaulipas	n/a	Carretera a Miquihuana km 10
VA099	2370-56116	Mexico	Tamaulipas	n/a	Carretera a Miquihuana km 11
VA100	2370-56200	Mexico	Tamaulipas	n/a	Carretera a Miquihuana km 9
1/0/05	0440 77404		-	Burnet /	Balcones Canyonlands National Wildlife
VA105	2410-77101	USA	Texas	Williamson	Refuge
VA106	2410-77102	USA	Texas	Burnet / Williamson	Balcones Canyonlands National Wildlife Refuge
VATUO	2410-11102	USA	10202	Burnet /	Balcones Canyonlands National Wildlife
VA107	2410-77103	USA	Texas	Williamson	Refuge
	2110 11100		10/100	Burnet /	Balcones Canyonlands National Wildlife
VA108	2410-77104	USA	Texas	Williamson	Refuge
				Burnet /	Balcones Canyonlands National Wildlife
VA109	2410-77105	USA	Texas	Williamson	Refuge
	- · · ·			Burnet /	Balcones Canyonlands National Wildlife
VA110	2410-77106	USA	Texas	Williamson	Refuge

				Burnet /	Balcones Canyonlands National Wildlife
VA111	2410-77107	USA	Texas	Williamson	Refuge
				Burnet /	Balcones Canyonlands National Wildlife
VA112	2410-77108	USA	Texas	Williamson	Refuge
				Burnet /	Balcones Canyonlands National Wildlife
VA113	2410-77109	USA	Texas	Williamson	Refuge
				Burnet /	Balcones Canyonlands National Wildlife
VA114	2410-77110	USA	Texas	Williamson	Refuge
VA115	2430-90819	USA	Texas	Kerr	Kerr Wildlife Management Area
VA116	2430-90820	USA	Texas	Kerr	Kerr Wildlife Management Area
VA117	2430-90821	USA	Texas	Kerr	Kerr Wildlife Management Area
VA118	2430-90822	USA	Texas	Kerr	Kerr Wildlife Management Area
VA119	2430-90823	USA	Texas	Kerr	Kerr Wildlife Management Area
VA120	2430-90824	USA	Texas	Kerr	Kerr Wildlife Management Area
VA121	2430-90825	USA	Texas	Kerr	Kerr Wildlife Management Area
VA122	2430-90826	USA	Texas	Kerr	Kerr Wildlife Management Area
VA123	2430-90827	USA	Texas	Kerr	Kerr Wildlife Management Area
VA124	2430-90828	USA	Texas	Kerr	Kerr Wildlife Management Area
VA125	2430-90837	USA	Texas	Somervell	Quail Ridge
VA126	2430-90838	USA	Texas	Somervell	Quail Ridge
VA127	2430-90839	USA	Texas	Somervell	Quail Ridge
VA128	2430-90840	USA	Texas	Somervell	Quail Ridge
VA129	2430-90841	USA	Texas	Somervell	Quail Ridge
VA130	2430-90842	USA	Texas	Somervell	Quail Ridge
VA131	2430-90843	USA	Texas	Somervell	Quail Ridge
VA132	2430-90844	USA	Texas	Somervell	Quail Ridge
VA133	2430-90845	USA	Texas	Somervell	Quail Ridge
VA134	2430-90846	USA	Texas	Somervell	Quail Ridge
VA135	2430-90847	USA	Texas	Somervell	Quail Ridge