INDEX OF DRAWINGS

1. COVER SHEET
2. GENERAL NOTES
3. GENE HOWE SITE PLAN
4. MATADOR #1 SITE PLAN
5. MATADOR #2 SITE PLAN
6. WELL SITE DETAILS
7. WELL BUILDING PLANS
8. GENE HOWE ELECTRICAL PLAN
9. MATADOR #1 ELECTRICAL PLAN
10. MATADOR #2 ELECTRICAL PLAN
11. MISCELLANEOUS ELECTRICAL DETAILS

BUILDING CODE SUMMARY

A. INTERNATIONAL CODE COUNCIL ADOPTIONS*
 1. BUILDING CODE
 INTERNATIONAL BUILDING CODE 2015
 2. STRUCTURAL CODE
 INTERNATIONAL BUILDING CODE 2015
 3. PLUMBING CODE
 INTERNATIONAL PLUMBING CODE 2015
 4. MECHANICAL CODE
 INTERNATIONAL MECHANICAL CODE 2015
 5. GAS CODE
 INTERNATIONAL FUEL GAS CODE 2015
 6. RESIDENTIAL CODE
 INTERNATIONAL RESIDENTIAL CODE 2015
 7. EXISTING BUILDINGS
 INTERNATIONAL EXISTING BUILDINGS CODE 2015

B. NATIONAL FIRE PROTECTION ASSOCIATION
 1. ELECTRICAL CODE
 NATIONAL ELECTRIC CODE, NFPA-70 2020
 2. FIRE CODE
 NFPA - 1 2015
 3. LIFE SAFETY CODE
 NFPA - 101 2015

C. STATE ENERGY CONSERVATION OFFICE (SECO)/TEXAS COMPTROLLERS OFFICE
 1. ENERGY CODES FOR STATE BUILDINGS - Energy Conservation Design Standards: Texas Administrative Code, Title 34, Part 1, Ch.19, Subchapter C
 See SECO website for State Funded Buildings, New Construction and Major Renovation Requirements and SECO Compliance Certification Forms
 2. WATER CONSERVATION STANDARDS FOR STATE BUILDINGS - Energy Conservation Design Standards: Texas Administrative Code, Title 34, Part 1, Ch.19, Subchapter C
 a. COMPLIANCE WITH THE WATER CONSERVATION DESIGN STANDARDS FOR STATE BUILDINGS AND INSTITUTIONS OF HIGHER EDUCATION FACILITIES, STATE ENERGY CONSERVATION OFFICE (SECO), 2016
 See SECO website for Texas Water Conservation Design Standards, Requirements and SECO Compliance Certification / Reporting Form

D. ACCESSIBILITY CODES
 1. US DEPT. OF JUSTICE, 2010 ADA STANDARDS FOR ACCESSIBLE DESIGN
 2. ARCHITECTURAL BARRIERS ACT ACCESSIBILITY GUIDELINES; OUTDOOR DEVELOPED AREAS, NOVEMBER 25, 2013
 3. 2012 TEXAS ACCESSIBILITY STANDARDS, ELIMINATION OF ARCHITECTURAL BARRIERS, TEXAS GOVERNMENT CODE, CHAPTER 469

E. PLAYGROUND SAFETY CODE
 1. ASTM F1487-17, STANDARD CONSUMER SAFETY PERFORMANCE SPECIFICATIONS FOR PLAYGROUND EQUIPMENT FOR PUBLIC USE
 2. ASTM F2223-15, STANDARD GUIDE FOR ASTM STANDARDS ON PLAYGROUND SURFACING

SCOPE OF WORK

CONSTRUCTION OF NEW RESIDENTIAL DRINKABLE WATER SUPPLY WELLS INCLUDING PUMP, PIPING, ELECTRICAL, AND TRENCHING

2 PROPOSED WELLS ARE LOCATED AT THE MATADOR WILDLIFE MANAGEMENT AREA (WMA) AND 1 WELL IS LOCATED AT THE GENE HOWE WMA.
1. Take all necessary steps to protect employees, equipment, and public from injury or damage. The work site is secured by signs and other protective devices.

2. The Contractor must keep the working area clean and free of clutter and debris. All tools, equipment, and materials are neatly stored and properly secured.

3. The Contractor is responsible for providing all necessary equipment and materials to complete the work. The Contractor must ensure that all equipment and materials are in good working order and meet all safety standards.

4. The Contractor is required to meet all federal, state, and local regulations for the work being performed. All permits and licenses are obtained and maintained throughout the project.

5. The Contractor is responsible for ensuring that all work is performed in a safe and professional manner. The Contractor must comply with all safety regulations and use proper protective equipment.

6. The Contractor is required to provide all necessary labor and equipment to complete the work. The Contractor must ensure that all labor is skilled and experienced in the work being performed.

7. The Contractor is responsible for providing all necessary supplies and materials to complete the work. The Contractor must ensure that all supplies and materials are of high quality and meet all specifications.

8. The Contractor is required to provide all necessary training and supervision to ensure that all work is performed safely and efficiently.

9. The Contractor is responsible for ensuring that all work is completed in a timely manner. The Contractor must provide a work schedule and ensure that all work is completed within the agreed-upon timeframe.

10. The Contractor must be aware of the project site and all its hazards. The Contractor must take all necessary steps to protect employees and the public from injury.
RESIDENCE GENE HOWE
WELL SITE PLAN

WELL SITE PLAN

RESIDENCE GENE HOWE
WELL DETAIL

RESIDENCE GENE HOWE
WELL DETAIL

1. DESIGN WELLS TO BE CLEANED AND REWALLELED WITH TRACER PLACING MATERIALS AS NEEDED TO MEET WATER QUALITY STANDARDS. WATER WELL TO BE COMPLETED AND IN SERVICE

2. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

3. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

4. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

5. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

6. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

7. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

8. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

9. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

10. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

11. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

12. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

13. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

14. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

15. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

16. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.

17. INSTALL PROPOSED SERVICE LINES FROM WELL PUMP TO RESIDENCE/SHOP AND FUTURE AREA, AS SHOWN. INSTALL PROPOSED SERVICE LINES FROM WARREN ROAD TO EXISTING BUILDING AND PLUMBING WITH BALL VALVE TO EXISTING BUILDING.
PROPOSED FRP BUILDING FOR WELL, CHLORINATION SYSTEM, AND WELL PRESSURE TANK

1 1/4" SCHEDULE 40 PVC WATER LINE TO RESIDENCE

CONNECT PROPOSED SERVICE LINE TO EXISTING BUILDING PLUMBING WITH GATE VALVE AND VALVE BOX (FIELD LOCATE)

EXISTING WELL TO BE PLUGGED AND ABANDONED. WELL PIT AND ASSOCIATED EQUIPMENT TO BE ABANDONED AND DEMO'D ONCE NEW WELL IS COMPLETED AND IN SERVICE

REFER TO ELEVATION DETAIL, SHEET 6.

18" TOTAL DEPTH = 205' APPROX. (0 - 120') APPROX. (120' - 200') GRAVEL PACK AT SCREENED INTERVAL 5" 1'-2 3/4" MIN. 8 5/8" GRAVEL PACK BENTONITE PLUG PRESSURE GROUTING

GENERAL NOTES
1. CASING AND SCREEN DEPTHS SHOWN ARE APPROXIMATE ONLY. CONTRACTOR SHALL REFER TO WELL LOGS FOR MATERIAL SETTING DEPTHS FOR INDIVIDUAL WELLS.

2. THE CASING SHALL BE 5" SDR-17 PVC AND SHALL EXTEND A MINIMUM OF 18" ABOVE THE FINISH FLOOR OF THE BUILDING AND A MINIMUM OF 1" ABOVE THE WELL SEALING BLOCK.

3. THE DRILL HOLE SHALL HAVE A MINIMUM DIAMETER OF 8-3/4".

5. THE GRAIN SIZE OF THE GRAVEL WILL BE DETERMINED BASED UPON SAMPLES TAKEN DURING CONSTRUCTION OF THE TEST HOLE. REFER TO SPECIFICATIONS FOR GRAIN SIZE AND TYPE OF GRAVEL.

6. THE WELL HEAD SHALL BE SEALED BY A GASKET TO PREVENT POSSIBILITY OF CONTAMINATING THE WELL WATER.

7. PUMP AND MOTOR SHALL BE NOMINAL 4" DIAMETER. MOTOR SHALL BE CONFIGURED WITH COOLING SHROUD.

8. INSTALL WELL HEAD J-BOX ON 1-5/8" UNISTRUT WITH STAINLESS STEEL POST BASES. ATTACH POST BASES TO NEW CONCRETE WITH STAINLESS STEEL ANCHORS.

9. CONCRETE TO BE 3000 PSI. REBAR TO BE GRADE 60.
EXISTING WELL TO BE PLUGGED AND ABANDONED ONCE NEW WELL IS COMPLETED AND PLACED IN SERVICE

PROPOSED FRP BUILDING FOR WELL, CHLORINATION SYSTEM, AND WELL PRESSURE TANK

INSTALL 1 1/4" SCHEDULE 40 PVC WATER LINE TO RESIDENCE

CONNECT PROPOSED SERVICE LINE TO EXISTING BUILDING PLUMBING WITH GATE VALVE AND VALVE BOX (FIELD LOCATE)

EXISTING WELL PIT AND PRESSURE TANK TO BE ABANDONED AND DEMO'D

INSTALL BALL VALVE IN VALVE BOX ADJACENT TO RESIDENCE

REFER TO ELEVATION DETAIL, SHEET 6.

18" TOTAL DEPTH = 205' APPROX. (0 - 120') APPROX. (120' - 200') GRAVEL PACK AT SCREENED INTERVAL

5" 1'-2 3/4" MIN. 8 5/8

GRAVEL PACK BENTONITE PLUG PRESSURE GROUTING

GENERAL NOTES

1. CASING AND SCREEN DEPTHS SHOWN ARE APPROXIMATE ONLY. CONTRACTOR SHALL REFER TO WELL LOGS FOR MATERIAL SETTING DEPTHS FOR INDIVIDUAL WELLS.

2. THE CASING SHALL BE 5" SDR-17 PVC AND SHALL EXTEND A MINIMUM OF 18" ABOVE THE FINISH FLOOR OF THE BUILDING AND A MINIMUM OF 1" ABOVE THE WELL SEALING BLOCK.

3. THE DRILL HOLE SHALL HAVE A MINIMUM DIAMETER OF 8-3/4".

5. THE GRAIN SIZE OF THE GRAVEL WILL BE DETERMINED BASED UPON SAMPLES TAKEN DURING CONSTRUCTION OF THE TEST HOLE. REFER TO SPECIFICATIONS FOR GRAIN SIZE AND TYPE OF GRAVEL.

6. THE WELL SCREEN SLOT SIZE SHALL BE CONFIRMED BY THE SCREEN MANUFACTURER.

7. CONTRACTOR SHALL FURNISH AND INSTALL SUBMERSIBLE PUMP UNIT PER SPECS.

8. 1/2" HDPE AIR LINE TO MEASURE WATER LEVELS AFTER WELL COMPLETION (PIPE TO EXTEND TO A POINT 3' BELOW PUMP.)

9. CONCRETE TO BE 3000 PSI. REBAR TO BE GRADE 60.

10. CONCRETE SLAB SHALL SLOPE AWAY FROM THE WELL HEAD IN ALL DIRECTIONS AT 1/4" PER FOOT.

11. WELL HEAD SHALL BE SEALED BY A GASKET TO PREVENT POSSIBILITY OF CONTAMINATING THE WELL WATER.

12. PUMP AND MOTOR SHALL BE NOMINAL 4" DIAMETER. MOTOR SHALL BE CONFIGURED WITH COOLING SHROUD.

13. INSTALL WELL HEAD J-BOX ON 1-5/8" UNISTRUT WITH STAINLESS STEEL POST BASES. ATTACH POST BASES TO NEW CONCRETE WITH STAINLESS STEEL ANCHORS.

14. PROJECT WILL BE CONSTRUCTED WITH MATERIALS TO FINE CONCRETE SPECIFICATIONS AND STEEL ANCHOR.
60 AMPERE 240/120 VOLT NON-FUSED DISCONNECT, ROUTE 3#6,#8G,1"C TO BUILDING PANEL

1 1/4" SCH. 40 PVC MANIFOLD

PRESSURE RELIEF VALVE INSTALL CHLORINATION SYSTEM (PER SPECS)

1 1/4" SCH. 40 PVC WATER LINE TO RESIDENCE

NEW WATER WELL SEE DETAILS SHEETS PER LOCATION

3'x 3' ROOF HATCH CENTERED ON WATER WELL

FIBERGLASS AWNING

INJECTION POINT BUILDING PANEL WELL PUMP CONTROLLER (NOTE 1)

2#12, #12G, 3/4"C TO PRESSURE CONTROLS AS REQUIRED FOR A PROPERLY OPERATING SYSTEM

INSTALL WELL PRESSURE TANK (PER SPECS)

12"x12" FRP BACKDRAFT EXHAUST LOUVER NEAR BOTTOM

8" 698 CFM NON-METALLIC INTAKE FAN NEAR TOP, WITH SCREENED HOOD

HOSE BIBB FOR TANK DRAIN

GENERAL NOTE:
1. INSTALL WELL PUMP CONTROLLER ADJACENT TO CHLORINATION BUILDING PANEL. CONNECT POWER SUPPLY TO 2-POLE, 20 AMPERE CIRCUIT BREAKER IN PANEL.

LEGEND
- PROPOSED GATE VALVE
- PROPOSED BUTTERFLY VALVE

GENERAL NOTE:
ALL WELL PUMP COMPRESSORS TO BE PROVIDED PERIMETER BUILDING PANEL. CIRCUIT BREAKERS TO BE SUPPLIED AT SMP.

REVISED:
03/09/2021 DESIGNED BY: S.D.H. DRAWN BY: J.C. REVIEWED BY: S.D.H.
EXISTING 35' CLASS 5 POLE WORKSHOP RESIDENCE

PROPOSED FRP BUILDING FOR WELL, FILTER SYSTEM, CHLORINATION SYSTEM, AND WELL PRESSURE TANK

EXISTING FUSED SWITCH AND RISER

INSTALL 40' CLASS 5 WOODEN POLE

EXISTING POLE TO BE REMOVED IN ITS ENTIRETY. FILL RESULTING HOLE TO MATCH EXISTING GRADE.

EXISTING 35' CLASS 5 SERVICE POLE

INSTALL 35' CLASS 5 WOODEN POLE

ELECTRICAL ONE-LINE DIAGRAM

GENERAL NOTES
1. CUT EXISTING UTILITIES USING PINS MARKED FROM LENSICAL OBSERVATION. WEEK DURING INSTALLATION CABLES FROM EXISTING UTILITIES TO THE PROPRIETARY SYSTEM.

NOTES INDICATED ON DRAWING:
1. REMOVE ALL EXISTING CONDUCTORS BACK TO FUSED SWITCH REMOVE ALL ABOVE GRADE CONDUIT AND ABANDON BELOW GRADE CONDUIT.
2. REMOVE FUSED SWITCH AND CONDUIT RISER IN THEIR ENTIRETY INCLUDING ALL SUPPORTS. CUT CONDUCTORS AT EXISTING TRIPLEX CONDUCTOR.
3. POSITION NEW POLE SUCH THAT THE SPAN BETWEEN THE TWO EXISTING POLES HAS NO ANGLE AND IS IN A STRAIGHT LINE.
4. DISCONNECT EXISTING CONDUCTORS FROM EXISTING POLE AT WELL ROOM EXISTING CONDUCTORS MIGHT BE CUT TO PLACEMENT CONDUCTOR WIRE USED TO MAKE ALL CONNECTIONS AT POLES.
5. INSTALL NEW CONDUCTORS FROM NEW POLE TO EXISTING POLE NEAR ABANDONED WELL.
6. INSTALL NEW FIXED SWITCH FOR NEW BUILDING.
7. INSTALL SEPARATE SECONDARY CONNECTION FOR EACH SPAN.
8. DEAD END NEW TRIPLEX WITH EXISTING SECONDARY CONNECTION. CONNECT CONDUCTORS TO SHOP SERVICE CONDUCTORS.

LEGEND
SYMBOL
DESCRIPTION
C Junction Box
EXISTING OVERHEAD ELECTRICAL
NEW OVERHEAD ELECTRICAL
CONDUIT OR CABLE - EXPOSED
CONDUIT - UNDERGROUND
CONDUIT
EMPTY CONDUIT
WEATHERPROOF
GROUND FAULT INTERRUPTER
RECEPTACLE, NEMA 5-20R UNLESS OTHERWISE INDICATED
HOME RUN TO PANEL INDICATED.
UNLESS OTHERWISE INDICATED, PROVIDE 2#12 AWG, #12G, 3/4"C.
SHORT DASH INDICATES HOT CONDUCTOR, LONG DASH INDICATES NEUTRAL AND CURVED DASH INDICATES GROUND.
NON-FUSED DISCONNECT AMPERE RATING AS INDICATED
REFER NOTE INDICATED
WP GFI 30
EC J C
SCALE IN FEET
10 0 20
RESIDENCE #1 MATADOR

GENERAL NOTES:
1. THIS DRAWING UTILIZES MONOCHROME ORIENTATION.
2. SCALE: 1" = 20'-0"
3. DRAWN BY: A.S.
4. DESIGNED BY: C.W.V.
5. DATE: 03/09/2021
6. CONTRACTOR SHOWN.
7. VERIFY THE ACCURACY FROM LOCATED OBSERVATIONS.
8. THE UTILITIES, ALL OBSERVATIONS.
9. ELECTRICAL ONE-LINE DIAGRAM

ELECTRICAL SITE PLAN

1. ENCLOSURE AFTER REMOVAL OF CONDUIT.
2. INSTALL GUY AND ANCHOR ON EXISTING POLE.
3. INSTALL SEPARATE SECONDARY CONNECTION FOR EACH SPAN.
4. INSTALL COVER.
5. ABANDON CONDUCTORS.
6. INSTALL COVER.
7. REMOVE ENCLOSURE BREAKER IN CIRCUIT
8. ENCLOSED WIRE TO PANELBOARD.
9. REMOVE ENCLOSURE BREAKER.
10. REMOVE ENCLOSURE BREAKER IN CIRCUIT
11. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
12. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
13. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
14. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
15. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
16. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
17. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
18. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
19. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
20. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
21. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
22. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
23. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
24. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
25. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
26. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
27. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
28. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
29. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
30. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
31. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
32. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
33. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
34. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
35. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
36. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
37. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
38. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
39. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
40. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
41. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
42. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
43. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
44. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
45. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
46. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
47. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
48. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
49. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
50. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
51. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
52. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
53. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
54. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
55. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
56. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
57. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
58. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
59. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
60. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
61. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
62. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
63. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
64. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
65. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
66. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
67. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
68. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
69. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
70. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
71. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
72. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
73. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
74. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
75. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
76. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
77. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
78. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
79. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
80. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
81. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
82. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
83. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
84. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
85. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
86. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
87. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
88. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
89. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
90. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
91. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
92. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
93. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
94. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
95. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
96. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
97. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
98. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
99. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
100. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
101. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
102. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
103. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
104. REMOVE ENCLOSURE BREAKER, AND SWITCH, GENERATOR CONNECTION,
GENERAL NOTES:
1. All existing utilities, plumbing, and wiring are per the plans as shown. New conductors will be run to existing service. The new service will be modeled 8"x8"x6".
2. New conductors will be brought to existing service. Minimum 10 KV.
3. New conductors will be brought to existing service. Minimum 8"x8"x6".
4. New conductors will be brought to existing service. Minimum 6"x6"x6".
5. New conductors will be brought to existing service. Minimum 4"x4"x4".
6. New conductors will be brought to existing service. Minimum 2"x2"x2".
7. New conductors will be brought to existing service. Minimum 1"x1"x1".
8. New conductors will be brought to existing service. Minimum 3/8"x3/8"x3/8".
9. New conductors will be brought to existing service. Minimum 1/4"x1/4"x1/4".
10. New conductors will be brought to existing service. Minimum 1/8"x1/8"x1/8".
11. New conductors will be brought to existing service. Minimum 1/16"x1/16"x1/16".
12. New conductors will be brought to existing service. Minimum 1/32"x1/32"x1/32".
13. New conductors will be brought to existing service. Minimum 1/64"x1/64"x1/64".
14. New conductors will be brought to existing service. Minimum 1/128"x1/128"x1/128".
15. New conductors will be brought to existing service. Minimum 1/256"x1/256"x1/256".
16. New conductors will be brought to existing service. Minimum 1/512"x1/512"x1/512".
17. New conductors will be brought to existing service. Minimum 1/1024"x1/1024"x1/1024".
18. New conductors will be brought to existing service. Minimum 1/2048"x1/2048"x1/2048".
19. New conductors will be brought to existing service. Minimum 1/4096"x1/4096"x1/4096".
20. New conductors will be brought to existing service. Minimum 1/8192"x1/8192"x1/8192".
21. New conductors will be brought to existing service. Minimum 1/16384"x1/16384"x1/16384".
22. New conductors will be brought to existing service. Minimum 1/32768"x1/32768"x1/32768".
23. New conductors will be brought to existing service. Minimum 1/65536"x1/65536"x1/65536".
24. New conductors will be brought to existing service. Minimum 1/131072"x1/131072"x1/131072".
25. New conductors will be brought to existing service. Minimum 1/262144"x1/262144"x1/262144".
26. New conductors will be brought to existing service. Minimum 1/524288"x1/524288"x1/524288".
27. New conductors will be brought to existing service. Minimum 1/1048576"x1/1048576"x1/1048576".
28. New conductors will be brought to existing service. Minimum 1/2097152"x1/2097152"x1/2097152".
29. New conductors will be brought to existing service. Minimum 1/4194304"x1/4194304"x1/4194304".
30. New conductors will be brought to existing service. Minimum 1/8388608"x1/8388608"x1/8388608".
31. New conductors will be brought to existing service. Minimum 1/16777216"x1/16777216"x1/16777216".
32. New conductors will be brought to existing service. Minimum 1/33554432"x1/33554432"x1/33554432".
33. New conductors will be brought to existing service. Minimum 1/67108864"x1/67108864"x1/67108864".
34. New conductors will be brought to existing service. Minimum 1/134217728"x1/134217728"x1/134217728".
35. New conductors will be brought to existing service. Minimum 1/268435456"x1/268435456"x1/268435456".
36. New conductors will be brought to existing service. Minimum 1/536870912"x1/536870912"x1/536870912".
37. New conductors will be brought to existing service. Minimum 1/1073741824"x1/1073741824"x1/1073741824".
38. New conductors will be brought to existing service. Minimum 1/2147483648"x1/2147483648"x1/2147483648".
39. New conductors will be brought to existing service. Minimum 1/4294967296"x1/4294967296"x1/4294967296".
40. New conductors will be brought to existing service. Minimum 1/8589934592"x1/8589934592"x1/8589934592".
POLE AS INDICATED

5/8" EYEBOLT, LENGTH AS REQUIRED FOR POLE DIAMETER.

SECONDARY SWINGING INSULATED CLEVIS.

2 - 1/4" SQUARE WASHER AND LOCK NUT AS REQUIRED.

NOTE: ALL COMPONENTS SHALL BE HOT DIP GALVANIZED.

SECONDARY CONNECTION

NO SCALE

3

11

18"

3"

2"

2"

3"

BURIED CABLE MARKER

SAND BACKFILL

PVC CONDUIT AS INDICATED.

SIZE AND NUMBER INDICATED ON PLAN.

FINAL GRADE

SELECT BACKFILL COMPACTED TO 95% STANDARD PROCTOR DENSITY IN 6" LIFTS.

SEE SPECIFICATIONS

DIRECT BURIED CONDUIT

NO SCALE

2" C TO ELECTRIC SERVICE

3/4"x10'-0" COPPERCLAD GROUND ROD

6'-0" 2" C TO WELL BUILDING

POLE DEPTH AND INSTALLATION AS SPECIFIED

ATTACH EQUIPMENT INDICATED TO POLE USING HOT DIP GALVANIZED UNISTRUT TOP AND BOTTOM.

ATTACH UNISTRUT TO POLE WITH TWO HOT DIP GALVANIZED 1/4"x3" LAG BOLTS. GAIN POLE AT UNISTRUT ATTACHMENT TO PROVIDE A FLAT SURFACE FOR UNISTRUT.

SIZE OF HOLE TO BE SAME AS UN-EXPANDED ANCHOR.

ELECTRICAL RISER DETAIL

NO SCALE

12'-0"

3

11

6'-0"

NOTE: ALL COMPONENTS SHALL BE HOT DIP GALVANIZED.

DEAD END ASSEMBLY

NO SCALE

SERVE OR CLIP APPROX. AFTER STRAIN IS APPLIED

NOTE: ALL COMPONENTS SHALL BE HOT DIP GALVANIZED.

POLE HEIGHT AND CLASS AS INDICATED ON PLAN.

FUSED DISCONNECT SWITCH OR PANEL AS INDICATED.