Restroom Facility in Eisenhower State Park. The new restroom building shall include amenities for men and women, inclusive of 3 toilets on the women’s side, 2 toilets and 2 sinks on the men’s side, 3 showers each side, and 2 family restrooms. Project to include demolition of existing restroom building, upgrade to utilities, recreation of existing parking lot, addition of site amenities required for the new facility. Materials and methods for construction shall be in accordance with the Architecture, Engineering, and Construction Division of the Texas Parks and Wildlife Department. This design and construction is to comply with the following codes:

1. 2015 INTERNATIONAL BUILDING CODE
2. 2015 INTERNATIONAL MECHANICAL CODE
3. 2015 INTERNATIONAL PLUMBING CODE
4. 2015 INTERNATIONAL ELECTRICAL CODE
5. 2015 LIFE SAFETY CODE
6. 2015 INTERNATIONAL FIRE CODE
7. 2015 INTERNATIONAL FUEL GAS CODE
8. 2010 ARCHITECTURAL BARRIERS ACT ACCESSIBILITY GUIDELINES; OUTDOOR DEVELOPED AREAS, NOVEMBER 25, 2013
9. 2015 INTERNATIONAL FIRE CODE OMITTED IN LIEU OF TPWD’S IMPLEMENTATION OF NATIONAL FIRE PROTECTION ASSOCIATION CODES.

ALTERNATE 01: Provide polished finish face on all CMU blocks in lieu of standard finish faces. See Sheet A911.

ALTERNATE 02: Replace all 8”x4”x16” CMU block with 8”x8”x16” CMU block. Provide White Limestone CMU block color only for family restrooms. See Sheet A911.

GSBS ARCHITECTS
B&H ENGINEERS, INC.
REPLACE FULL EXISTING SS WITH NEW 6" SS BY PIPE BURST OR APPROVED EQUAL METHOD (CONTRACTOR TO PRIORITIZE PROTECTION OF EXISTING TREES.)

STA. 0+00.00 "LINE W-1"
CONNECT NEW 1" DOMESTIC WATER SERVICE TO EX. SERVICES.
INSTALL:
1-2"x1" TEE
1 - 1" 22.5° BEND
1 - 2" VALVE
1 - 1" VALVE

PROPOSED 15' x 3.5' Ø (1000 GAL) PROPANE GAS TANK W/ BASE & BOLLARDS (COORD. WITH MEP ON INSTALLATION)

EXISTING TREES NOT SHOWN FOR CLARITY

EXISTING STORM UNDER GRAVEL ROAD TO REMAIN

INSTALL 12 LF OF 2" WATER LINE AND CONNECT TO EX. LINE
INSTALL:
1-2"x2" TEE
1 - 2" 22° BEND
2 - 2" VALVES

END 2" DOMESTIC WATER 5' FROM BUILDING.

STA. 0+67.25 "LINE SS-1"
END 6" SANITARY SEWER 5' FROM BUILDING. [COORDINATE WITH MEP]

6" FL = 685.33
STA. 0+64.24
END 2" GAS LINE 5' FROM BUILDING.

4' RELOCATED ELEC. BOX, CONNECT TO EX. LINE

9.56'
CAP EXISTING SANITARY LINE

EXTENT OF OVERHEAD ELECTRIC RELOCATION BY ONCOR [SEE KEYNOTE #1]

PROPOSED 10' WIDE ELECTRIC EASEMENT (DEDICATED BY OTHER)

STA. 0+00.00 "LINE SS-1"
INSTALL NEW 4' Ø MANHOLE AND CONNECT EX. 4" SS FROM EX. DUMP STATION (EAST)
BEGIN 6" SS TO BUILDING (SOUTHEAST)
BEGIN 6" "PIPE BURST" TO TREATMENT STATION (WEST) [VERIFY EX. PIPE INVERTS AND MATCH]

STA. 1+60.50 "LINE SS-1"
END NEW 6" SS @ EX. TREATMENT STATION (MATCH EX.)

STA. 0+00
BEGIN 2" GAS LINE TO PROPOSED BUILDING [COORDINATE WITH MEP & STRUCTURAL]

9.12'
PROP. 2" GAS EXISTING 3/4" WATER EXISTING SANITARY (SIZE UNKNOWN)

6" SS @ 0.5% MIN. "BORE UNDER PAVEMENT"

STA. 0+49.00 "LINE SS-1"
INSTALL:
1 - 6" 30° BEND
1 - 6" CLEANOUT

6.42'
PIPE BURST EQUIPMENT PIT

9.75'
PIPE BURST EQUIPMENT PIT

LIMITS OF EX. PVMT

LIMITS OF EX. PVMT

GAS TANK

17.32'
41.66°'
7.67'
42'
9.88'
24'

See Drawing C101 for Sheet Notes

Keynotes

1. CONTRACTOR TO VERIFY DEPTH OF UNDERGROUND INFRASTRUCTURE PRIOR TO CONSTRUCTION OF PROPOSED EASEMENT

2. INSTALL THE PROPOSED LINE IN A 12" DITCH SHOULDER MINIMUM 5'-0" WIDE, BATTENS MUST BE BEHIND 5'-0" WALL TOLERANCE OR WALL TOLERANCE BE CO-ORDINATED WITH THE RELEVANT AGENCY PRIOR TO CONSTRUCTION OF PROPOSED EASEMENT. ALL DITCH SHOULDER D-products TO BE COLLABORATED WITH THE RELEVANT AGENCY PRIOR TO CONSTRUCTION OF PROPOSED EASEMENT.

3. CONTRACTOR TO VERIFY DEPTH OF UNDERGROUND INFRASTRUCTURE PRIOR TO CONSTRUCTION OF PROPOSED EASEMENT

4. INSTALL PUMP 4'-0" WALL TOLERANCE SHOULDER MINIMUM 5'-0" WIDE, BATTENS MUST BE BEHIND 5'-0" WALL TOLERANCE OR WALL TOLERANCE BE CO-ORDINATED WITH THE RELEVANT AGENCY PRIOR TO CONSTRUCTION OF PROPOSED EASEMENT.
1. Final grading support the Silt Fence shall be installed on a slight slope toward the assumed storm source. Bottom line shall be elevated a minimum of 1 foot above the assumed storm source.

2. The top of the Silt Fence shall be trimmed in one stroke to a straight line at an approximate 2 inch distance from the top of the Silt Fence. These lines shall be established prior to the installation of any vegetation, which is not to extend beyond the top of the Silt Fence. If additional vegetation is required, these lines shall be established after the installation of vegetation, and any vegetation shall be trimmed to not extend beyond the Silt Fence.

3. The Silt Fence shall be installed within 24 inches of the assumed storm source. The Silt Fence shall be installed on a 2-foot wide strip of graded earth which is not to extend beyond the Silt Fence. If additional vegetation is required, these lines shall be established after the installation of vegetation, and any vegetation shall be trimmed to not extend beyond the Silt Fence.

4. The Silt Fence shall be trimmed to extend not more than 6 inches from the assumed storm source. The Silt Fence shall be trimmed to not extend beyond the Silt Fence. If additional vegetation is required, these lines shall be established after the installation of vegetation, and any vegetation shall be trimmed to not extend beyond the Silt Fence.

5. The Silt Fence shall be trimmed to a straight line at an approximate 2 inch distance from the top of the Silt Fence. These lines shall be established prior to the installation of any vegetation, which is not to extend beyond the top of the Silt Fence. If additional vegetation is required, these lines shall be established after the installation of vegetation, and any vegetation shall be trimmed to not extend beyond the Silt Fence.

6. The Silt Fence shall be trimmed to a straight line at an approximate 2 inch distance from the top of the Silt Fence. These lines shall be established prior to the installation of any vegetation, which is not to extend beyond the top of the Silt Fence. If additional vegetation is required, these lines shall be established after the installation of vegetation, and any vegetation shall be trimmed to not extend beyond the Silt Fence.

7. The Silt Fence shall be trimmed to a straight line at an approximate 2 inch distance from the top of the Silt Fence. These lines shall be established prior to the installation of any vegetation, which is not to extend beyond the top of the Silt Fence. If additional vegetation is required, these lines shall be established after the installation of vegetation, and any vegetation shall be trimmed to not extend beyond the Silt Fence.
1. **Notes:**
 - 1. **Notes:**
 - 2. **Notes:**
 - 3. **Notes:**
 - 4. **Notes:**
 - 5. **Notes:**

 Legend:
 - **Legend:**
 - **Legend:**
 - **Legend:**
 - **Legend:**

 CROSS SECTION
 - **CROSS SECTION**
 - **CROSS SECTION**
 - **CROSS SECTION**
 - **CROSS SECTION**

 DETAILS
 - **DETAILS**
 - **DETAILS**
 - **DETAILS**
 - **DETAILS**

 EISENHOWER STATE PARK
 - **EISENHOWER STATE PARK**
 - **EISENHOWER STATE PARK**
 - **EISENHOWER STATE PARK**
 - **EISENHOWER STATE PARK**

 PROJECT NUMBER:
 - **PROJECT NUMBER:**
 - **PROJECT NUMBER:**
 - **PROJECT NUMBER:**
 - **PROJECT NUMBER:**

 REGISTRATION NO. BR2895
 - **REGISTRATION NO. BR2895**
 - **REGISTRATION NO. BR2895**
 - **REGISTRATION NO. BR2895**
 - **REGISTRATION NO. BR2895**

 DARIN JENNINGS
 - **DARIN JENNINGS**
 - **DARIN JENNINGS**
 - **DARIN JENNINGS**
 - **DARIN JENNINGS**

 STATE OF TEXAS
 - **STATE OF TEXAS**
 - **STATE OF TEXAS**
 - **STATE OF TEXAS**
 - **STATE OF TEXAS**

 PROFESSIONAL ENGINEER
 - **PROFESSIONAL ENGINEER**
 - **PROFESSIONAL ENGINEER**
 - **PROFESSIONAL ENGINEER**
 - **PROFESSIONAL ENGINEER**

 LICENSED 82476
 - **LICENSED 82476**
 - **LICENSED 82476**
 - **LICENSED 82476**
 - **LICENSED 82476**

 01 REINFORCED CONCRETE SIDEWALK
 - **01 REINFORCED CONCRETE SIDEWALK**

 02 EXISTING SIDEWALK TO PROPOSED SIDEWALK
 - **02 EXISTING SIDEWALK TO PROPOSED SIDEWALK**

 03 SIDEWALK PAYMENT TO ASPHALT
 - **03 SIDEWALK PAYMENT TO ASPHALT**

 04 ASPHALT PAVEMENT SECTION
 - **04 ASPHALT PAVEMENT SECTION**

 05 TYPICAL ACCESSIBLE PARKING (NO BUMP)
 - **05 TYPICAL ACCESSIBLE PARKING (NO BUMP)**

 06 TYPICAL CONCRETE WHEELSTOP
 - **06 TYPICAL CONCRETE WHEELSTOP**

 07 PRECAST SANITARY SEWER MANHOLE DETAIL
 - **07 PRECAST SANITARY SEWER MANHOLE DETAIL**
NATIVE SEED SELECTION SCHEDULE

Landscape contractor is responsible for informing all plant counts to include complete coverage of areas indicated in planting plans. Landscape contractor is responsible for the maintenance of all plant material and planting seeds until final acceptance by the owner. Maintenance to include watering, pruning, weed control, insect control, disease control as well as anything normally required to maintain plant material in a healthy growing condition.

1. **PLANTING PERIOD 15 NOVEMBER THROUGH 15 JUNE**

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Minimum % Pure</th>
<th>Live Seed Required</th>
<th>Pounds of Live Seed Required Per Acre (10 lbs/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **PLANTING PERIOD 1 OCTOBER THROUGH 15 MARCH**

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Minimum % Pure</th>
<th>Live Seed Required</th>
<th>Pounds of Live Seed Required Per Acre (25 lbs/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STACKED BOND, APPLY THRU FINISH FLOOR CMU4 CMU6 BOTH SIDES

A.F.F. STRUCTURAL DECK 284 SF

BOTTLE FILLERS, 296 SF

STANDARD 3

COORDINATE ALIGNMENT 4

2" 330 SF

RUNNING BOND, STRUCTURAL DECK A301 A

A.F.F. 1" = 1'-0" A111 8

WALL BASE AT BREEZEWAY PROJECT DRAWN BY:

1. WALL TYPE B5C 22'-7 5/8" A

TO STRUCTURE ABOVE, ALIGN 102B 101B

101B 101B

A.F.F.

A.F.A.
1. **MECHANICAL AND ELECTRICAL DATA SHOWN FOR REFERENCE ONLY.**

 COORDINATE WITH MECHANICAL AND ELECTRICAL DRAWINGS. ANY CONFLICTS SHOULD BE ADDRESSED WITH ARCHITECT AS SOON AS POSSIBLE.

2. **PROVIDE BLOCKING IN WALLS & CEILINGS AS REQUIRED FOR INSTALLATION OF MECH., PLUMB. & ELEC. EQUIP. AND SPECIALTIES.**

 - SUSPENDED LINEAR LIGHT, SEE ELECTRICAL, INSTALL @ 10'-0" A.F.F.
 - SUSPENDED LIGHT FIXTURE, SEE ELECTRICAL, INSTALL @ 10'-0" A.F.F.
 - UNIT HEATER, SEE MECHANICAL, INSTALL @ 10'-0" A.F.F.
 - EXTERIOR LIGHT FIXTURE, SEE ELECTRICAL, INSTALL @ 10'-4" A.F.F.
 - WALL PARTITION BELOW, UNLESS NOTED OTHERWISE

ROOM # CEILING TYPE A 9'-0"

CEILING NOTES

- SHADED WALLS TO DECK, TYP.
- TONGUE-AND-GROOVE WOOD SOFFIT, STAIN AND SEAL
- WOOD RIDGE BEAM, STAIN AND SEAL TO MATCH CEILING, SEE STRUCTURAL

COMPANY NAME

- SHEET TITLE: REFLECTED CEILING PLAN
- SHEET NUMBER: A131
- PROJECT: RESTROOM REPLACEMENT
- PROJECT NUMBER: 1270136
- 1/4" = 1'-0" A131 1
- 1/2" = 1'-0" A131 2
- FIXTURE INSTALLATION HEIGHT

DRAWN BY:

DESIGNED BY:

DATE:

REVISED:

RCP LEGEND

- **1** EXPOSED STRUCTURE
- **2** SUSPENDED LIGHT FIXTURE
- **3** SUSPENDED LINEAR LIGHT
- **4** EXTERIOR LIGHT FIXTURE

CEILING SCHEDULE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>TONGUE-AND-GROOVE WOOD CEILING, STAIN AND SEAL</td>
</tr>
<tr>
<td>200</td>
<td>Exposed Structure</td>
</tr>
</tbody>
</table>

NOTES

- DRAWN AUG 15, 2021
- CHECKED AUG 17, 2021
- APPROVED AUG 18, 2021
- 1/4" = 1'-0" A131 1
- 1/2" = 1'-0" A131 2
- DRAWN IN INK ON MYCADICIAL PROJECT NUMBER: 1270136

SIGNATURE DATE

- OWNERSHIP OF INSTRUMENTS OF THIS DRAWING IS PROHIBITED WITHOUT THE WRITTEN AUTHORIZATION OF GSBS. SIGNATURE DATE.

COPIES OF THIS SHEET

- 3 COPIES OF THIS SHEET TO ARCHITECTS AND 2 COPIES TO CONTRACTOR.

EMAIL

- GSBSARCHITECTS.COM

ADDRESS

- 7291 GLEVIEW DRIVE FORT WORTH, TX 76180
- P 817.589.1722
COURSING OF CMU DIRECTLY
REMOVE PORTION OF BOTTOM VENTILATION LOUVER,
CENTER ON DOOR

A811
CMU2
CMU3
CMU5
SPLIT
CMU2
CMU5
SOLID SURFACE TOP
CENTER ON DOOR, TYP.
ACCESSIBLE COAT HOOK,
9'-8 3/16" EL. - 1 1/4"
TRENCH DRAIN
STATION

CMU5
8" MIRROR 24" X 48", CENTER OVER SINK
STATION

CONCRETE MASONRY UNIT (CMU) LEGEND

FAMILY 103 - SOUTH ELEVATION
FAMILY 104 - WEST ELEVATION
FAMILY 104 - SOUTH ELEVATION
FAMILY 104 - EAST ELEVATION
FAMILY 104 - NORTH ELEVATION
FAMILY 103 - WEST ELEVATION
FAMILY 103 - SOUTH ELEVATION
FAMILY 103 - EAST ELEVATION
FAMILY 103 - NORTH ELEVATION

FLOOR SLOPE
2'-11 5/8"

A811
STATION

1/4" = 1'-0" A403 8

B2C

10'-0" 6

21'-4 3/8"

1/4" = 1'-0" A403 10

SS FLUSH ACCESS DOOR

TRENCH DRAIN DETAIL

SS FLUSH ACCESS DOOR

GRAB BAR
2'-8" 1'-0"

SEE SHEET G102
8'-0" 8"

SEE MECHANICAL

HOLD

B2C

8" 8"

SEE MECHANICAL

TOILET TISSUE DISPENSER

MIRROR 24" X 48", CENTER OVER SINK

CONCRETE MASONRY UNIT (CMU) LEGEND

FACE
103 - SOUTH ELEVATION
BABY CHANGING
1'-0" 103

MIRROR 24" X 48", CENTER OVER SINK
STATION

PROJECT

3

AS SCHEDULE
OF THIS DRAWING IS PROHIBITED WITHOUT THE WRITTEN AUTHORIZATION OF GSBS. SIGNATURE DATE

U

A403

DRAWN BY:

SS FLUSH ACCESS DOOR

CONCRETE MASONRY UNIT (CMU) LEGEND

FACE
103 - SOUTH ELEVATION
BABY CHANGING
1'-0" 103

MIRROR 24" X 48", CENTER OVER SINK
STATION

PROJECT

3

AS SCHEDULE
OF THIS DRAWING IS PROHIBITED WITHOUT THE WRITTEN AUTHORIZATION OF GSBS. SIGNATURE DATE

U

A403

DRAWN BY:

SS FLUSH ACCESS DOOR

CONCRETE MASONRY UNIT (CMU) LEGEND

FACE
103 - SOUTH ELEVATION
BABY CHANGING
1'-0" 103

MIRROR 24" X 48", CENTER OVER SINK
STATION

PROJECT

3

AS SCHEDULE
OF THIS DRAWING IS PROHIBITED WITHOUT THE WRITTEN AUTHORIZATION OF GSBS. SIGNATURE DATE

U

A403

DRAWN BY:

SS FLUSH ACCESS DOOR

CONCRETE MASONRY UNIT (CMU) LEGEND

FACE
103 - SOUTH ELEVATION
BABY CHANGING
1'-0" 103

MIRROR 24" X 48", CENTER OVER SINK
STATION

PROJECT

3

AS SCHEDULE
OF THIS DRAWING IS PROHIBITED WITHOUT THE WRITTEN AUTHORIZATION OF GSBS. SIGNATURE DATE

U

A403

DRAWN BY:
Door Schedule

<table>
<thead>
<tr>
<th>Door Number</th>
<th>Door</th>
<th>Frame Width</th>
<th>Height</th>
<th>Type</th>
<th>Material/Finish</th>
<th>Hardware</th>
<th>Head Height</th>
<th>Type</th>
<th>Material/Finish</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>101A</td>
<td>Single</td>
<td>3'-0"</td>
<td>7'-0"</td>
<td>D1</td>
<td>HM / PNT</td>
<td>P1</td>
<td>805DL</td>
<td>4"</td>
<td>HM / PNT</td>
<td></td>
</tr>
<tr>
<td>101A</td>
<td>Single</td>
<td>3'-0"</td>
<td>7'-0"</td>
<td>D1</td>
<td>HM / PNT</td>
<td>P1</td>
<td>7/A601</td>
<td>5/A601</td>
<td>3/A601</td>
<td>A 101A</td>
</tr>
<tr>
<td>103A</td>
<td>Single</td>
<td>3'-0"</td>
<td>7'-0"</td>
<td>D1</td>
<td>HM / PNT</td>
<td>P1</td>
<td>305DL</td>
<td>4"</td>
<td>HM / PNT</td>
<td></td>
</tr>
<tr>
<td>104A</td>
<td>Single</td>
<td>3'-0"</td>
<td>7'-0"</td>
<td>D1</td>
<td>HM / PNT</td>
<td>P1</td>
<td>7/A601</td>
<td>5/A601</td>
<td>3/A601</td>
<td>A 104A</td>
</tr>
</tbody>
</table>

DOOR TYPES

- SNGL: Single Panel
- HM: Hollow Metal
- PNT: Paint

FRAME TYPES

- 3": 3" Frame
- 3/4": 3/4" Frame

NOTES:

- All doors to be painted with a finish color specified in the finish schedule.
- All doors to be hollow metal with a painted finish.
- All hardware to be stainless steel.
- All thresholds to be continuous with sealant on both sides.
- All shims to be provided as required.

REMARKS:

- Any special conditions required.
- See finish schedule on sheet A121 for paint color.
- Door closer shall be mounted to allow for 180-degree door swing.
A. The contractor shall compare the architectural, structural, mechanical, electrical, and commissioning drawings and specifications to ensure accuracy and compliance with the design intent.

B. Live Loads

1. Components and cladding wind pressures:

<table>
<thead>
<tr>
<th>Component</th>
<th>Area (psf) (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
<td>-35.7</td>
</tr>
<tr>
<td>Corner</td>
<td>-35.7</td>
</tr>
<tr>
<td>Overhang</td>
<td>-96.1</td>
</tr>
<tr>
<td>Roof</td>
<td>-96.1</td>
</tr>
<tr>
<td>Wall</td>
<td>-22.3</td>
</tr>
<tr>
<td>Interior</td>
<td>-22.3</td>
</tr>
<tr>
<td>Edge (500 or greater)</td>
<td>-22.3</td>
</tr>
<tr>
<td>Interior (500 or greater)</td>
<td>-22.3</td>
</tr>
</tbody>
</table>

C. Design Loads

1. Construction joints

<table>
<thead>
<tr>
<th>Joint Type</th>
<th>Spacing plus 2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural (Select)</td>
<td></td>
</tr>
</tbody>
</table>

D. Provide 6 percent plus or minus 1 1/2 percent of entrained air in concrete permanently.

E. Vertical construction joints in concrete placements shall be permitted only where required by the structural engineer.

F. Reinforcement of concrete masonry unit joints with ladder type, hot dip galvanized, wire mesh reinforcement.

G. Joint reinforcing shall be discontinuous at control and expansion joints.

H. Dimensional tolerances:

<table>
<thead>
<tr>
<th>Element</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>All reinforcing steel</td>
<td>1/4"</td>
</tr>
<tr>
<td>All grout</td>
<td>1/4"</td>
</tr>
<tr>
<td>All concrete</td>
<td>1/4"</td>
</tr>
</tbody>
</table>

I. Steel sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sections</td>
<td></td>
</tr>
</tbody>
</table>

J. Periodic site observation by field representatives of JQ is solely for the purpose of verifying completion of the work as intended.

K. Design of the structure and provisions for building equipment supported shall be in accordance with the Structural Drawings and specifications.

L. Design load calculation shall include the following:

1. Roof and floor load on the structure is based on ASCE 7-10 using the following:

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>0.2</td>
</tr>
<tr>
<td>Live</td>
<td>0.5</td>
</tr>
<tr>
<td>Roof</td>
<td>1.0</td>
</tr>
</tbody>
</table>

M. Exterior Equipment Pads

<table>
<thead>
<tr>
<th>Pad Type</th>
<th>Dimensions</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Equipment Pad</td>
<td>4500 NWT</td>
<td>1"</td>
</tr>
</tbody>
</table>

N. Structural Steel:

<table>
<thead>
<tr>
<th>Section</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sections</td>
<td></td>
</tr>
</tbody>
</table>

O. Coarse grout shall conform to ASTM C476, with a maximum aggregate size of 1/2".

P. All reinforcing should be new billet steel in accordance with ASTM A615, Grade 60, unless noted otherwise in the Structural Drawings or these notes.

Q. Conduits and pipes shall not be spaced closer than three diameters or 24".

R. All reinforcing should be new billet steel in accordance with ASTM A615, Grade 60, unless noted otherwise in the Structural Drawings or these notes.

S. Conduits, pipes and sleeves shall not be spaced closer than three diameters or 24".

T. The code base shall be the weight of the roof elements and be following:

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>0.2</td>
</tr>
<tr>
<td>Live</td>
<td>0.5</td>
</tr>
<tr>
<td>Roof</td>
<td>1.0</td>
</tr>
</tbody>
</table>

U. The code base shall be the weight of the second story elements and be following:

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>0.2</td>
</tr>
<tr>
<td>Live</td>
<td>0.5</td>
</tr>
<tr>
<td>Roof</td>
<td>1.0</td>
</tr>
</tbody>
</table>

V. All reinforcing should be new billet steel in accordance with ASTM A615, Grade 60, unless noted otherwise in the Structural Drawings or these notes.

W. All reinforcing should be new billet steel in accordance with ASTM A615, Grade 60, unless noted otherwise in the Structural Drawings or these notes.

X. All reinforcing should be new billet steel in accordance with ASTM A615, Grade 60, unless noted otherwise in the Structural Drawings or these notes.

Y. All reinforcing should be new billet steel in accordance with ASTM A615, Grade 60, unless noted otherwise in the Structural Drawings or these notes.

Z. All reinforcing should be new billet steel in accordance with ASTM A615, Grade 60, unless noted otherwise in the Structural Drawings or these notes.

AA. Exterior Equipment Pads

<table>
<thead>
<tr>
<th>Pad Type</th>
<th>Dimensions</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Equipment Pad</td>
<td>4500 NWT</td>
<td>1"</td>
</tr>
</tbody>
</table>

BB. Horizontal construction joints in concrete placements shall be permitted only where required by the structural engineer.

CC. Cost of the project shall be in accordance with the General Building Code used as the basis for the structural design.

DD. This work shall include the coordination of sizes, alignment, dimensions, equipment, and other components as indicated on the Structural Drawings.

EE. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

FF. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

GG. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

HH. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

II. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

JJ. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

KK. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

LL. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

MM. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

NN. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

OO. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

PP. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

QQ. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

RR. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

SS. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

TT. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

UU. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

VV. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

WW. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

XX. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

YY. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

ZZ. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.

AA. All structural elements of the project have been designed by the engineer to resist or stabilizing system is completely installed and the structure completed only. It is the responsibility of the contractor to provide all safety precautions and programs in connection with the work, for the acts or omissions of the contractor, subcontractors, or any other person performing the work.
A. Screw Anchors:

1. In Concrete: Adhesive Anchors shall have been tested and qualified in accordance with ICC-ES report for the anchor. If conflicts exist between these referenced drawings:
 a. Epoxy: HIT-RE 500V3 SAFE SET (ICC-ES ESR-3814), Hilti Inc.
 b. Acrylic: AT-XP (IAPMO-ES ER-0263), Simpson Strong-Tie Co., Inc.
 c. Acrylic: AT-XP (IAPMO-ES ER-0281), Simpson Strong-Tie Co., Inc.
 d. Nuts and washers shall have a proof load strength at least as strong as constructional steel.

2. Drilled hole condition: Dry

3. Anchors and dowels of the size and embedment shown on the Drawings shall be utilized. In the event of a conflict between the anchor manufacturer’s recommendations and those of the writer, the writer’s recommendations shall be followed.

4. Hot dip galvanize after fabrication all structural steel items and connections shall be designed and detailed by the Contractor under the direct supervision of a registered professional engineer. Calculation should be performed in accordance with AISC 360.1.1 and the construction drawings should be submitted with the bid.

5. Field welded connections shall be designed and built to accommodate a weld factor of 1.0.

6. Connector for double 1 3/4" beams or single 3 1/2" beams shall be Simpson HHUS410 face mounted hangers, typical unless noted otherwise on the Structural Drawings.

7. Holes in connection plates shall be no more than 1/16" larger than the anchor diameter. Holes in connection plates shall be closer to a concrete edge.

8. Concrete shall have a compressive strength of 2500 psi minimum at an age of 36. Hilti Safe-Set system may be used to eliminate hole cleaning with adhesive anchors. Field welding connections shall not be allowed, unless noted otherwise.

9. Sealed calculations for all connections designed by the Contractor shall be submitted. Sealed calculations for all connections designed by the Contractor under the direct supervision of a registered professional engineer. Calculations are submitted.

10. Where noted on the Structural Drawings, joists shall be either Parallel Strand Lumber (PSL) or joist hangers of type "LU" as manufactured by the Simpson Company or equal.

11. Simpson Strong Tie steel connectors in contact with Pressure Treated Lumber shall be manufactured using water-borne preservatives in accordance with AWPA methods described below. The preservative chemicals shall be copper azole (CBA-C & CA-B) for interior or exterior uses and inorganic chromium and shall not contain ammonia carriers.

12. Connectors for double 1 3/4" beams or single 3 1/2" beams shall be Simpson HHUS410 face mounted hangers, typical unless noted otherwise on the Structural Drawings.

13. Where noted on the Structural Drawings, joists shall be either Parallel Strand Lumber (PSL):

a. Parallel Strand Lumber (PSL):
 1. Preservative Treatment by Pressure Process should be performed according to AWPA methods described below. The preservative chemicals shall be copper azole (CBA-C & CA-B) for interior or exterior uses and inorganic chromium and shall not contain ammonia carriers.
 2. Preservative Treated Lumber shall be Southern Yellow Pine and shall be preservative treated using water-borne preservatives in accordance with AWPA methods described below. The preservative chemicals shall be copper azole (CBA-C & CA-B) for interior or exterior uses and inorganic chromium and shall not contain ammonia carriers.
 3. Joists shall have a compression strength of 2000 psi minimum at an age of 36. The Super 50 bolts are utilized.
 4. Connectors for double 1 3/4" beams or single 3 1/2" beams shall be Simpson HHUS410 face mounted hangers, typical unless noted otherwise on the Structural Drawings.
 5. Field welded connections shall be designed and built to accommodate a weld factor of 1.0.
 6. Connectors for double 1 3/4" beams or single 3 1/2" beams shall be Simpson HHUS410 face mounted hangers, typical unless noted otherwise on the Structural Drawings.

B. Structural Steel:

1. All welding shall conform to ANSI/AWS D1.1, latest edition.

2. Do not notch joists or beams. Drill holes through webs of engineered wood beams. Holes shall be square or 1.425 inches in diameter at each fastener. Fasteners shall be 3" composite, respectively. Axially loaded members shall be furnished with grade 6.8 bolts. Compression, respectively. Axially loaded members shall be furnished with grade 6.8 bolts. Compression, respectively. Axially loaded members shall be furnished with grade 6.8 bolts.

3. Interior/Exterior ACQ (All) / 0.40 pcf (max) HDG / ZM AX

4. All bolts and lag screws shall have standard washers. All anchor and expansion bolts are utilized.

5. Joists shall be either Parallel Strand Lumber (PSL):

a. Parallel Strand Lumber (PSL):
 1. Preservative Treatment by Pressure Process should be performed according to AWPA methods described below. The preservative chemicals shall be copper azole (CBA-C & CA-B) for interior or exterior uses and inorganic chromium and shall not contain ammonia carriers.
 2. Preservative Treated Lumber shall be Southern Yellow Pine and shall be preservative treated using water-borne preservatives in accordance with AWPA methods described below. The preservative chemicals shall be copper azole (CBA-C & CA-B) for interior or exterior uses and inorganic chromium and shall not contain ammonia carriers.
 3. Joists shall have a compression strength of 2000 psi minimum at an age of 36. The Super 50 bolts are utilized.
 4. Connectors for double 1 3/4" beams or single 3 1/2" beams shall be Simpson HHUS410 face mounted hangers, typical unless noted otherwise on the Structural Drawings.
 5. Field welded connections shall be designed and built to accommodate a weld factor of 1.0.
 6. Connectors for double 1 3/4" beams or single 3 1/2" beams shall be Simpson HHUS410 face mounted hangers, typical unless noted otherwise on the Structural Drawings.

6. Interior/Exterior ACQ (All) / 0.40 pcf (max) HDG / ZM AX

7. Sealed calculations for all connections designed by the Contractor shall be submitted. Sealed calculations for all connections designed by the Contractor under the direct supervision of a registered professional engineer. Calculations are submitted.

8. Where noted on the Structural Drawings, joists shall be either Parallel Strand Lumber (PSL):
2. Inspection tasks may be coordinated with the fabricator or erector's Quality Control Inspector (QCI) where indicated with "SPECIAL" and approved to perform such work without special inspection. Special Inspections shall be performed in accordance with Chapter 17 of the 2015 International Building Code (IBC) by a Special Inspector.

Inspection Tasks during Welding:

- 1. cracked cross section of weld pass (crack depth greater than 1/16")
- 2. cracks in root pass of weld
- 3. profile and dimensions of access holes
- 4. Crater cross section
- 5. interpass and final cleaning
- 6. Cracking (crack depth greater than 1/16")
- 7. Proper position (F, V, H, OH)
- 8. Travel speed
- 9. Undercut
- 10. Flash in grooves and edges of weld
- 11. tongued, notched, or fillet welds
- 12. Cleanliness (condition of steel surfaces)
- 13. Proper bolting procedure selected for joint detail
- 14. Plastic bolting
- 15. Rejection of improper or incomplete welding procedures
- 16. Repair of improper or incomplete welding procedures

Inspection Tasks after Bolting:

- 1. Fastener assemblies of suitable condition, placed in all beams and structural slabs.
- 2. Fasteners marked in accordance with ASTM requirements
- 3. Fasteners are pretensioned in accordance with the most rigid point toward the free edges of tendons in post-tensioned concrete and structural members.
- 4. Proper bolting procedure selected for joint detail
- 5. Properly installed and pretensioned prestressing tendons and anchorages
- 6. Proper against grouting of bonded prestressing tendons
- 7. Proper application techniques
- 8. Pre-installation verification testing by installation personnel
- 9. Proper bolting procedure selected for joint detail
- 10. Properly installed and pretensioned prestressing tendons and anchorages
- 11. Properly installed and pretensioned prestressing tendons and anchorages
SHEET TITLE: FOUNDATION PLAN

PLAN NOTES:
1. FINISH FLOOR ELEVATION = 100'0", UNLESS NOTED OTHERWISE.
2. ACTUAL ELEVATION 690.00' = 100'-0".
3. TOP OF CONCRETE ELEVATION (T.O.C. EL.) = FINISH FLOOR, UNLESS RECESSED TO RECEIVE FLOORING MATERIALS.
4. REFER TO THE ARCHITECTURAL DRAWINGS FOR EXACT LOCATIONS OF FLOOR RECESSES, DROPS AND SLOPES NOT DIMENSIONED ON PLAN.
5. TYPICAL CONCRETE SLAB THICKNESS IS 5" (OVERALL), UNLESS NOTED OTHERWISE.
6. VERIFY AND COORDINATE ALL DIMENSIONS WITH ARCHITECTURAL DRAWINGS.
7. SEE 8/S303 FOR PERMISSIBLE UTILITY TRENCHING LOCATION.
8. SEE 9/S303 FOR BENCH SUPPORT. REFERENCE 12/A811 FOR ADDITIONAL INFORMATION.

SHEET INDEX:
- STRUCTURAL NOTES - S101, S102
- TYPICAL CONCRETE DETAILS - S301, S302
- TYPICAL MASONRY DETAILS - S401, S402

SCALE: 1/4" = 1'-0"
1. See architectural drawings for exact locations of roof slopes, hips, valleys, and berths not specifically dimensioned.
2. Verify all coordinates and dimensions with architectural drawings.
3. See structural notes for roof sheathing requirements.
4. Roof diaphragm shall be installed as defined by building code.
5. See detail S601 for interior wall bracing.

SHEET INDEX:
- Structural notes - S101, S102
- Typical masonry details - S401, S402
- Typical wood details - S601

North
PERMISSIBLE UTILITY TRENCH LOCATION DETAIL

NOTE:
- TRENCHING LOCATION REQUIREMENTS APPLY TO BOTH EXTERIOR AND INTERIOR UTILITIES PARALLEL TO BOTH ISOLATED AND CONTINUOUS FOOTINGS

FINISHED GRADE ZONE OF INFLUENCE LINE

1. REMOVE SURFACE ORGANICS AND DISPOSE OR STOCKPILE FOR LANDSCAPE AREAS.
2. EXCAVATE EXISTING SOILS TO 12'-0" MINIMUM BELOW EXISTING GRADE ELEVATION OR UNTIL LIMESTONE IS REACHED AND STOCKPILE FOR REUSE.
3. PROOF-ROLL, SCARIFY AND COMPACT EXPOSED SUBGRADE PER BUILDING PAD PREPARATION NOTES.
4. USE STOCK-PILED ON-SITE SOILS AT EXISTING GRADE ELEVATIONS BENEATH FUTURE SELECT FILL LAYER AS REQUIRED TO CREATE UNIFORM SELECT FILL LAYER.
5. ADDITIONAL SELECT FILL (OTHER RISE TILL) MAY BE REQUIRED TO ACHIEVE BUILDING PAD ELEVATION.

CLAY CAP, TYP.

TYPICAL CROSS SECTION THRU STRUCTURAL FILL PAD

NOTES:
- MOISTURE-CONDITIONED SOIL SHALL EXTEND 5'-0" BEYOND BUILDING PERIMETER.
- DO NOT EXTEND SELECT FILL (BEYOND) BUILDING PERIMETER - TYP.

VAPOR RETARDER - SEE SPECIFICATIONS

NEW CONCRETE FOUNDATION
NEW FINISHED GRADE SLOPE AWAY

PERMITTED UTILITY TRENCH LOCATION DETAIL

LOWEST BOT. OF FOOTING ELEVATION ADJACENT TO TRENCH
1. TYPICAL NON-LOAD BEARING CMU PARTITION WALL REINFORCING DETAIL

2. TYPICAL LOAD BEARING CMU WALL REINFORCING DETAIL

3. CMU WALL JAMB REINFORCING DETAIL

4. CMU WALL JAMB REINFORCING DETAIL - CORNER & TEE-CONDITIONS

NOTES:

1. a. FOR OPENING AT EXTERIOR WALL, EXTEND JAMB REINFORCING TO TOP OF WALL.

2. FOR LAP SPLICE LENGTHS SEE SEE NOTE 1.b FOR JAMB CONDITIONS.

3. CMU WALL JAMB REINFORCING - FOR WALL BRACING DETAIL SEE DETAILS.

FOR DOWEL INFO., SEE DETAILS.

24" O.C. MAX. - TYP. U.N.O.

FULL HEIGHT OF WALL @ BRACE DETAILS.
TYPICAL CMU BAR PLACEMENT DETAIL

1. SPLICES FOR VERTICAL REINF. SHALL BE STAGGERED.

NOTES:
2. DO NOT SPLICE BARS IN LINTELS.

 ALL BARS ARE SPLICED AT THE SAME LOCATION.
 IN ADJACENT CELLS SO THAT NO MORE THAN 1/2 OF
 CMU WALL LAP SPLICE SCHEDULE

#6
#5 2'-1"
#4
#7 2'-11" 4'-5"

FOR CONTROL JOINT SPACING.
SEE ((ARCHITECTURAL DRAWINGS))
REINF. @ 16" O.C., U.N.O.
NOTE:

TEES (NOT SHOWN):
SECTIONS @ CORNERS AND
JOINT REINFORCING
PRE-FABRICATED

2'-6"

ARCH'L DRAWINGS &
CMU WALL VERT.
CONTROL JOINT
SPECIFICATIONS
JOINT SEALANT - SEE
-/---

ABOVE HAS CURLED FOR A MINIMUM OF 14 DAYS.

1. LINTELS SHALL REMAIN SHORED UNTIL MASONRY CONSTRUCTION

2. SEE ARCHITECTURAL DRAWINGS FOR OPENING SIZE AND LOCATION.

3. VERTICAL CONTROL JOINTS SHALL NOT CROSS LINTEL REINF.

NOTES:

NO SCALE

TYPICAL MASONRY WALL DOWEL DETAIL

1. AT WALLS WITH DOUBLE REINFORCING, PROVIDE SINGLE DOWEL AT SIZE AND SPACING OF SCHEDULED
 WALL REINFORCING. CENTER DOWEL ON WALL, U.N.O.
 "STABBED" IN.

FOLLOW MANUFACTURER’S INSTALLATION INSTRUCTIONS.

CAST-IN-PLACE (STRAIGHT BAR)
IN CMU
@ CONTROL
CONTROL JOINT
REINFORCING
TO ALIGN W/ BOND BEAM
IN BOND BEAM
DISCONTINUE
CONTROL JOINT

2. MASONRY DOWELS SHALL BE TIED IN OR DRILLED AND ADHERED. MASONRY DOWELS SHALL NOT BE
 TRAPPED.

3. PROVIDE DOWELS TO SLAB CONT. AT WALL REINF. TYP.

1/S401
& 6"

4. CMU WALL LAP SPlice SCHEDULE

5. CMU WALL LAP SPlice SCHEDULE

6. TYPICAL STEP IN BOND BEAM DETAIL

7. TYPICAL MASONRY WALL DOWEL DETAIL

8. TYPICAL ARCHES BEAM SUPPORT DETAIL

9. CMU WALL LAP SPICE SCHEDULE

10. TYPICAL CMU LINTEL DETAIL
NOTES:

1. SEE ARCH'L DRAWINGS FOR LOCATION AND DIMENSIONS OF WALL OPENINGS.

FOR ADDN'L INFO. SEE 2/S401

T.O. FOUNDATION

NOTES:

1. SEE ARCH'L DRAWINGS FOR LOCATION AND DIMENSIONS OF WALL OPENINGS.

FOR ADDN'L INFO. SEE 2/S401

T.O. FOUNDATION

NOTES:

1. SEE ARCH'L DRAWINGS FOR LOCATION AND DIMENSIONS OF WALL OPENINGS.

FOR ADDN'L INFO. SEE 2/S401

T.O. FOUNDATION

NOTES:

1. SEE ARCH'L DRAWINGS FOR LOCATION AND DIMENSIONS OF WALL OPENINGS.

FOR ADDN'L INFO. SEE 2/S401

T.O. FOUNDATION

NOTES:

1. SEE ARCH'L DRAWINGS FOR LOCATION AND DIMENSIONS OF WALL OPENINGS.

FOR ADDN'L INFO. SEE 2/S401

T.O. FOUNDATION

S410

MASONRY

ELEVATION

SHEET NUMBER

EISENHOWER STATE PARK

RESTROOM REPLACEMENT

PROJECT NUMBER:

4200137

DAVID A. WALKER

132006

01/22/2021

SOUTH ELEVATION - MENS

SCALE: 1/4" = 1'-0"

1 WEST ELEVATION - MENS

SCALE: 1/4" = 1'-0"

2 SOUTH ELEVATION - MENS

SCALE: 1/4" = 1'-0"

3 WEST ELEVATION - WOMENS

SCALE: 1/4" = 1'-0"

4 SOUTH ELEVATION - WOMENS

SCALE: 1/4" = 1'-0"

5 SOUTH ELEVATION - WOMENS

SCALE: 1/4" = 1'-0"

6 EAST ELEVATION - WOMENS

SCALE: 1/4" = 1'-0"

7 NORTH ELEVATION - WOMENS

SHEET TITLE

3017 WEST 7TH STREET, SUITE 400

817.546.7200

FORT WORTH, TEXAS 76107

JQ INFRASTRUCTURE, LLC

PROJECT NO:

Infrastructure

TBPE FIRM F-7986

JQIENG.COM

shaping the built environment
MECHANICAL ABBREVIATIONS, SYMBOLS AND NOTES (THIS IS A STANDARD LEGEND, NOT ALL SYMBOLS MAY BE APPLICABLE TO PROJECT)

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>Gallons Per Minute</td>
</tr>
<tr>
<td>CFM</td>
<td>Cubic Feet Per Hour</td>
</tr>
<tr>
<td>A</td>
<td>Air Conditioner</td>
</tr>
<tr>
<td>DI</td>
<td>Diameter Inside</td>
</tr>
<tr>
<td>OD</td>
<td>Diameter Outside</td>
</tr>
<tr>
<td>BFP</td>
<td>Box Fire Hydrant</td>
</tr>
<tr>
<td>TP</td>
<td>Temperature Probe</td>
</tr>
<tr>
<td>GH</td>
<td>Gals Per Hour</td>
</tr>
<tr>
<td>GS</td>
<td>Gals Per Second</td>
</tr>
<tr>
<td>EAT</td>
<td>Enter Air Temperature</td>
</tr>
<tr>
<td>EP</td>
<td>Elevations Per Foot</td>
</tr>
<tr>
<td>EFF</td>
<td>Efflux</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>GC</td>
<td>General Contractor</td>
</tr>
<tr>
<td>FS</td>
<td>Feet Per Second</td>
</tr>
<tr>
<td>TD</td>
<td>Temperature Display</td>
</tr>
<tr>
<td>PCHR</td>
<td>Primary Chilled Water Return</td>
</tr>
<tr>
<td>HWS</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>BFF</td>
<td>Below Finish Floor</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Regulating Valve</td>
</tr>
<tr>
<td>PH</td>
<td>Pressure Head</td>
</tr>
<tr>
<td>PC</td>
<td>Pressure Control</td>
</tr>
<tr>
<td>P/A</td>
<td>Pressure Adjustment</td>
</tr>
<tr>
<td>PO</td>
<td>Power Outlet</td>
</tr>
<tr>
<td>TCD</td>
<td>Temperature Control Device</td>
</tr>
<tr>
<td>Vav</td>
<td>Variable Air Volume</td>
</tr>
<tr>
<td>WB</td>
<td>Wet Bulb</td>
</tr>
<tr>
<td>V.P.</td>
<td>Ventilator Pressure</td>
</tr>
<tr>
<td>O.S.</td>
<td>Over Supply</td>
</tr>
<tr>
<td>O.C.</td>
<td>Over Ceiling</td>
</tr>
<tr>
<td>VAV</td>
<td>Variable Air Volume</td>
</tr>
<tr>
<td>H.E.</td>
<td>Heating Element</td>
</tr>
<tr>
<td>T.E.R.</td>
<td>Temperature Element</td>
</tr>
<tr>
<td>H.T.</td>
<td>Heat Trace</td>
</tr>
<tr>
<td>H.O.</td>
<td>Heat Only</td>
</tr>
<tr>
<td>S.E.</td>
<td>Service Exit</td>
</tr>
<tr>
<td>PNL</td>
<td>Panel</td>
</tr>
<tr>
<td>V.S.</td>
<td>Variable Speed</td>
</tr>
<tr>
<td>S.M.</td>
<td>Stack Mounted</td>
</tr>
<tr>
<td>O.F.</td>
<td>Opposite Finish</td>
</tr>
<tr>
<td>O.I.</td>
<td>Opposite Interior</td>
</tr>
<tr>
<td>D</td>
<td>Duct</td>
</tr>
<tr>
<td>H.R.</td>
<td>Heat Recovery</td>
</tr>
<tr>
<td>PCHR</td>
<td>Primary Chilled Water Return</td>
</tr>
<tr>
<td>PHWS</td>
<td>Primary Heating Water Supply</td>
</tr>
<tr>
<td>HWS</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>BIDG</td>
<td>Building</td>
</tr>
<tr>
<td>CWS</td>
<td>Cooling Water Supply</td>
</tr>
<tr>
<td>S.D.</td>
<td>Supply Duct</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>WSS</td>
<td>Waste Water System</td>
</tr>
<tr>
<td>EF</td>
<td>Exhaust Fan</td>
</tr>
<tr>
<td>PM</td>
<td>Primary Motor</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>LWH</td>
<td>Less Without Header</td>
</tr>
<tr>
<td>O.W.</td>
<td>Over Water</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>LTH</td>
<td>Less Than Header</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>R</td>
<td>Return</td>
</tr>
<tr>
<td>M</td>
<td>Make-up Air</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>CK</td>
<td>Control Knob</td>
</tr>
<tr>
<td>CDF</td>
<td>Control Display Panel</td>
</tr>
<tr>
<td>CTR</td>
<td>Control Transformer</td>
</tr>
<tr>
<td>CDS</td>
<td>Control Device Sheet</td>
</tr>
<tr>
<td>S</td>
<td>Sheet</td>
</tr>
<tr>
<td>TAG</td>
<td>Tag</td>
</tr>
<tr>
<td>MSO</td>
<td>Material Specifications Office</td>
</tr>
<tr>
<td>P</td>
<td>Plan</td>
</tr>
<tr>
<td>PD</td>
<td>Plan Design</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Reducing Valve</td>
</tr>
<tr>
<td>PH</td>
<td>Pressure Head</td>
</tr>
<tr>
<td>PC</td>
<td>Pressure Control</td>
</tr>
<tr>
<td>P/A</td>
<td>Pressure Adjustment</td>
</tr>
<tr>
<td>PO</td>
<td>Power Outlet</td>
</tr>
<tr>
<td>TCD</td>
<td>Temperature Control Device</td>
</tr>
<tr>
<td>H.E.</td>
<td>Heat Trace</td>
</tr>
<tr>
<td>H.O.</td>
<td>Heat Only</td>
</tr>
<tr>
<td>O.F.</td>
<td>Opposite Finish</td>
</tr>
<tr>
<td>O.I.</td>
<td>Opposite Interior</td>
</tr>
<tr>
<td>D</td>
<td>Duct</td>
</tr>
<tr>
<td>H.R.</td>
<td>Heat Recovery</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>HWS</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>BIDG</td>
<td>Building</td>
</tr>
<tr>
<td>CWS</td>
<td>Cooling Water Supply</td>
</tr>
<tr>
<td>S.D.</td>
<td>Supply Duct</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>WSS</td>
<td>Waste Water System</td>
</tr>
<tr>
<td>EF</td>
<td>Exhaust Fan</td>
</tr>
<tr>
<td>PM</td>
<td>Primary Motor</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>LWH</td>
<td>Less Without Header</td>
</tr>
<tr>
<td>O.W.</td>
<td>Over Water</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>LTH</td>
<td>Less Than Header</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>R</td>
<td>Return</td>
</tr>
<tr>
<td>M</td>
<td>Make-up Air</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>CK</td>
<td>Control Knob</td>
</tr>
<tr>
<td>CDF</td>
<td>Control Display Panel</td>
</tr>
<tr>
<td>CTR</td>
<td>Control Transformer</td>
</tr>
<tr>
<td>CDS</td>
<td>Control Device Sheet</td>
</tr>
<tr>
<td>S</td>
<td>Sheet</td>
</tr>
<tr>
<td>TAG</td>
<td>Tag</td>
</tr>
<tr>
<td>MSO</td>
<td>Material Specifications Office</td>
</tr>
<tr>
<td>P</td>
<td>Plan</td>
</tr>
<tr>
<td>PD</td>
<td>Plan Design</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Reducing Valve</td>
</tr>
<tr>
<td>PH</td>
<td>Pressure Head</td>
</tr>
<tr>
<td>PC</td>
<td>Pressure Control</td>
</tr>
<tr>
<td>P/A</td>
<td>Pressure Adjustment</td>
</tr>
<tr>
<td>PO</td>
<td>Power Outlet</td>
</tr>
<tr>
<td>TCD</td>
<td>Temperature Control Device</td>
</tr>
<tr>
<td>H.E.</td>
<td>Heat Trace</td>
</tr>
<tr>
<td>H.O.</td>
<td>Heat Only</td>
</tr>
<tr>
<td>O.F.</td>
<td>Opposite Finish</td>
</tr>
<tr>
<td>O.I.</td>
<td>Opposite Interior</td>
</tr>
<tr>
<td>D</td>
<td>Duct</td>
</tr>
<tr>
<td>H.R.</td>
<td>Heat Recovery</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>HWS</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>BIDG</td>
<td>Building</td>
</tr>
<tr>
<td>CWS</td>
<td>Cooling Water Supply</td>
</tr>
<tr>
<td>S.D.</td>
<td>Supply Duct</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>WSS</td>
<td>Waste Water System</td>
</tr>
<tr>
<td>EF</td>
<td>Exhaust Fan</td>
</tr>
<tr>
<td>PM</td>
<td>Primary Motor</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>LWH</td>
<td>Less Without Header</td>
</tr>
<tr>
<td>O.W.</td>
<td>Over Water</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>LTH</td>
<td>Less Than Header</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>R</td>
<td>Return</td>
</tr>
<tr>
<td>M</td>
<td>Make-up Air</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>CK</td>
<td>Control Knob</td>
</tr>
<tr>
<td>CDF</td>
<td>Control Display Panel</td>
</tr>
<tr>
<td>CTR</td>
<td>Control Transformer</td>
</tr>
<tr>
<td>CDS</td>
<td>Control Device Sheet</td>
</tr>
<tr>
<td>S</td>
<td>Sheet</td>
</tr>
<tr>
<td>TAG</td>
<td>Tag</td>
</tr>
<tr>
<td>MSO</td>
<td>Material Specifications Office</td>
</tr>
<tr>
<td>P</td>
<td>Plan</td>
</tr>
<tr>
<td>PD</td>
<td>Plan Design</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Reducing Valve</td>
</tr>
<tr>
<td>PH</td>
<td>Pressure Head</td>
</tr>
<tr>
<td>PC</td>
<td>Pressure Control</td>
</tr>
<tr>
<td>P/A</td>
<td>Pressure Adjustment</td>
</tr>
<tr>
<td>PO</td>
<td>Power Outlet</td>
</tr>
<tr>
<td>TCD</td>
<td>Temperature Control Device</td>
</tr>
<tr>
<td>H.E.</td>
<td>Heat Trace</td>
</tr>
<tr>
<td>H.O.</td>
<td>Heat Only</td>
</tr>
<tr>
<td>O.F.</td>
<td>Opposite Finish</td>
</tr>
<tr>
<td>O.I.</td>
<td>Opposite Interior</td>
</tr>
<tr>
<td>D</td>
<td>Duct</td>
</tr>
<tr>
<td>H.R.</td>
<td>Heat Recovery</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>HWS</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>BIDG</td>
<td>Building</td>
</tr>
<tr>
<td>CWS</td>
<td>Cooling Water Supply</td>
</tr>
<tr>
<td>S.D.</td>
<td>Supply Duct</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>WSS</td>
<td>Waste Water System</td>
</tr>
<tr>
<td>EF</td>
<td>Exhaust Fan</td>
</tr>
<tr>
<td>PM</td>
<td>Primary Motor</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>LWH</td>
<td>Less Without Header</td>
</tr>
<tr>
<td>O.W.</td>
<td>Over Water</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>LTH</td>
<td>Less Than Header</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>R</td>
<td>Return</td>
</tr>
<tr>
<td>M</td>
<td>Make-up Air</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>CK</td>
<td>Control Knob</td>
</tr>
<tr>
<td>CDF</td>
<td>Control Display Panel</td>
</tr>
<tr>
<td>CTR</td>
<td>Control Transformer</td>
</tr>
<tr>
<td>CDS</td>
<td>Control Device Sheet</td>
</tr>
<tr>
<td>S</td>
<td>Sheet</td>
</tr>
<tr>
<td>TAG</td>
<td>Tag</td>
</tr>
<tr>
<td>MSO</td>
<td>Material Specifications Office</td>
</tr>
<tr>
<td>P</td>
<td>Plan</td>
</tr>
<tr>
<td>PD</td>
<td>Plan Design</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Reducing Valve</td>
</tr>
<tr>
<td>PH</td>
<td>Pressure Head</td>
</tr>
<tr>
<td>PC</td>
<td>Pressure Control</td>
</tr>
<tr>
<td>P/A</td>
<td>Pressure Adjustment</td>
</tr>
<tr>
<td>PO</td>
<td>Power Outlet</td>
</tr>
<tr>
<td>TCD</td>
<td>Temperature Control Device</td>
</tr>
<tr>
<td>H.E.</td>
<td>Heat Trace</td>
</tr>
<tr>
<td>H.O.</td>
<td>Heat Only</td>
</tr>
<tr>
<td>O.F.</td>
<td>Opposite Finish</td>
</tr>
<tr>
<td>O.I.</td>
<td>Opposite Interior</td>
</tr>
<tr>
<td>D</td>
<td>Duct</td>
</tr>
<tr>
<td>H.R.</td>
<td>Heat Recovery</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>HWS</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>BIDG</td>
<td>Building</td>
</tr>
<tr>
<td>CWS</td>
<td>Cooling Water Supply</td>
</tr>
<tr>
<td>S.D.</td>
<td>Supply Duct</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>WSS</td>
<td>Waste Water System</td>
</tr>
<tr>
<td>EF</td>
<td>Exhaust Fan</td>
</tr>
<tr>
<td>PM</td>
<td>Primary Motor</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>LWH</td>
<td>Less Without Header</td>
</tr>
<tr>
<td>O.W.</td>
<td>Over Water</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>LTH</td>
<td>Less Than Header</td>
</tr>
<tr>
<td>AWC</td>
<td>Air Wash Coiled</td>
</tr>
<tr>
<td>R</td>
<td>Return</td>
</tr>
<tr>
<td>M</td>
<td>Make-up Air</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>CK</td>
<td>Control Knob</td>
</tr>
<tr>
<td>CDF</td>
<td>Control Display Panel</td>
</tr>
<tr>
<td>CTR</td>
<td>Control Transformer</td>
</tr>
<tr>
<td>CDS</td>
<td>Control Device Sheet</td>
</tr>
<tr>
<td>S</td>
<td>Sheet</td>
</tr>
<tr>
<td>TAG</td>
<td>Tag</td>
</tr>
<tr>
<td>MSO</td>
<td>Material Specifications Office</td>
</tr>
<tr>
<td>P</td>
<td>Plan</td>
</tr>
<tr>
<td>PD</td>
<td>Plan Design</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Reducing Valve</td>
</tr>
<tr>
<td>PH</td>
<td>Pressure Head</td>
</tr>
<tr>
<td>PC</td>
<td>Pressure Control</td>
</tr>
<tr>
<td>P/A</td>
<td>Pressure Adjustment</td>
</tr>
<tr>
<td>PO</td>
<td>Power Outlet</td>
</tr>
<tr>
<td>TCD</td>
<td>Temperature Control Device</td>
</tr>
<tr>
<td>H.E.</td>
<td>Heat Trace</td>
</tr>
<tr>
<td>H.O.</td>
<td>Heat Only</td>
</tr>
<tr>
<td>O.F.</td>
<td>Opposite Finish</td>
</tr>
<tr>
<td>O.I.</td>
<td>Opposite Interior</td>
</tr>
<tr>
<td>D</td>
<td>Duct</td>
</tr>
<tr>
<td>H.R.</td>
<td>Heat Recovery</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>HWS</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>HWR</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>BIDG</td>
<td>Building</td>
</tr>
<tr>
<td>CWS</td>
<td>Cooling Water Supply</td>
</tr>
<tr>
<td>S.D.</td>
<td>Supply Duct</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet Per Second</td>
</tr>
<tr>
<td>WSS</td>
<td>Waste Water System</td>
</tr>
<tr>
<td>EF</td>
<td>Exhaust Fan</td>
</tr>
<tr>
<td>PM</td>
<td>Primary Motor</td>
</tr>
<tr>
<td>PCHS</td>
<td>Primary Chilled Water Supply</td>
</tr>
</tbody>
</table>
MECHANICAL GENERAL NOTES:

1. FINAL LOCATIONS OF ALL AIR DEVICES SHALL BE COORDINATED WITH ARCHITECTURAL CEILING FINISHES.
2. DUCT SIZE NOTES REFER TO CLEAR INSIDE DIMENSION OF DUCT.
3. PROVIDE VOLUME DAMPERS FOR ALL SUPPLY, RETURN, AND EXHAUST BRANCH DUCTS TO BALANCE SYSTEM.
4. THERMOSTATS ARE TO BE INSTALLED IN VANDAL RESISTANT LOCK BOXES.
5. LOUTER LOCATIONS AND SIZES ARE TO BE COORDINATED WITH EXACT DIMENSIONS SHOWN ON ARCHITECTURAL AND STRUCTURAL PLANS.
6. ALL LOUVERS ARE TO BE INSTALLED TO PREVENT LINE OF SIGHT INTO THE RESTROOM SPACES.

NOTES BY SYMBOL:
- LOW VENTILATION LOUVER 8 IN. AFF. WITH 2.3 SQ. FT. MINIMUM FREE AREA IN FACE OF WALL TO PROVIDE PASSIVE VENTILATION.
- INSTALL EXHAUST FAN THERMOSTAT AT 4.5 FT. AFF.
NOTES:
1. PROVIDE WITH DISCONNECT SWITCH.
2. PROVIDE WITH THERMOSTAT. INTERLOCK FAN WITH LIGHT/OCCUPANCY SENSOR. FAN TO OPERATE WHEN TEMPERATURE EXCEEDS 80 DEG. F. OR WHEN THE SPACE IS OCCUPIED.
3. PROVIDE MOTORIZED DAMPER.
4. PROVIDE WITH FAN SPEED CONTROLLER.

UNIT HEATER SCHEDULE

<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>SERVICE</th>
<th>TOTAL AIR CFM</th>
<th>HEATING CAPACITY (KW)</th>
<th>TEMPERATURE RISE (°F)</th>
<th>ELECTRICAL DATA</th>
<th>DESIGN BASIS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCA 1</td>
<td>MENS RR</td>
<td>350</td>
<td>3.0</td>
<td>27</td>
<td>001 240 1</td>
<td>MARLEY</td>
<td>MUH03-21</td>
</tr>
<tr>
<td>LCA 2</td>
<td>MENS RR</td>
<td>350</td>
<td>3.0</td>
<td>27</td>
<td>001 240 1</td>
<td>MARLEY</td>
<td>MUH03-21</td>
</tr>
<tr>
<td>LCA 3</td>
<td>WOMENS RR</td>
<td>350</td>
<td>3.0</td>
<td>27</td>
<td>001 240 1</td>
<td>MARLEY</td>
<td>MUH03-21</td>
</tr>
</tbody>
</table>

RADIANT HEATER SCHEDULE (PROPANE)

<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>SERVICE</th>
<th>GAS INPUT (LOW/HIGH) (BTUH)</th>
<th>ELECTRICAL DATA</th>
<th>LENGTH (FT)</th>
<th>DESIGN BASIS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH 1</td>
<td>MENS RR</td>
<td>20,000/40,000</td>
<td>120 1 60</td>
<td>10</td>
<td>CALCAN</td>
<td>1</td>
</tr>
<tr>
<td>RH 2</td>
<td>MENS RR</td>
<td>20,000/40,000</td>
<td>120 1 60</td>
<td>10</td>
<td>CALCAN</td>
<td>1</td>
</tr>
<tr>
<td>RH 3</td>
<td>WOMENS RR</td>
<td>20,000/40,000</td>
<td>120 1 60</td>
<td>10</td>
<td>CALCAN</td>
<td>1</td>
</tr>
</tbody>
</table>

RADIANT HEATER SCHEDULE (ELECTRIC)

<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>SERVICE</th>
<th>HEATING CAPACITY (KW)</th>
<th>ELECTRICAL DATA</th>
<th>LENGTH (FT)</th>
<th>DESIGN BASIS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH 3</td>
<td>FAMILY RR</td>
<td>3.2</td>
<td>240 1</td>
<td>60</td>
<td>13</td>
<td>KING ELECTRICAL</td>
</tr>
<tr>
<td>RH 4</td>
<td>FAMILY RR</td>
<td>3.2</td>
<td>240 1</td>
<td>60</td>
<td>13</td>
<td>KING ELECTRICAL</td>
</tr>
</tbody>
</table>

LOUVER SCHEDULE

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>TYPE</th>
<th>DIMENSIONS (IN)</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXHAUST</td>
<td>STATIONARY</td>
<td>PER ARCHITETURAL PLANS</td>
<td>RUSKIN</td>
<td>ELF40V</td>
</tr>
<tr>
<td>INTAKE</td>
<td>STATIONARY</td>
<td>PER ARCHITETURAL PLANS</td>
<td>RUSKIN</td>
<td>ELF40V</td>
</tr>
</tbody>
</table>

NOTES:
1. LOUVER IS TO BE DRAINABLE WEATHER RESISTANT TYPE.
2. BLADES ARE TO BE SIGHT PROOF.
3. COLOR IS TO BE COORDINATED WITH ARCHITECT.
PLUMBING GENERAL NOTES:

1. CONTRACTOR SHALL VERIFY ALL EXISTING PIPING, INVERTS AND EXACT LOCATIONS OF EXISTING PLUMBING EQUIPMENT BEFORE BEGINNING ANY WORK.

2. INSTALL ISOLATION VALVES AT EACH FIXTURE OR RESTROOM GROUP OF FIXTURES. NO VALVES SHALL BE INSTALLED OVER 11' A.F.F.

3. ALL LAVATORIES, SINKS AND URINALS ARE TO HAVE AN INDIVIDUAL CLEANOUT LOCATED 6" ABOVE THE FLOOD RIM OF THE HIGHEST FIXTURE ON THE STACK.

4. REFER TO PLUMBING FIXTURE SCHEDULE (P401) FOR PIPE SIZES TO INDIVIDUAL FIXTURES.

5. PROVIDE AND INSTALL TRENCH DRAINS THAT ARE MANUFACTURED WITH A MINIMUM OF 2% (1/4" PER FOOT) SLOPE TO SANITARY PIPING SHOW IN PLANS.
PLUMBING GENERAL NOTES:

1. CONTRACTOR SHALL VERIFY ALL EXISTING PIPING, INVERTS AND EXACT LOCATIONS OF EXISTING PLUMBING EQUIPMENT BEFORE BEGINNING ANY WORK.

2. INSTALL ISOLATION VALVES AT EACH FIXTURE OR RESTROOM GROUP OF FIXTURES. NO VALVES SHALL BE INSTALLED OVER 11'-0" A.F.F.

3. ALL LAVATORIES, SINKS AND URINALS ARE TO HAVE AN INDIVIDUAL CLEANOUT LOCATED 6" ABOVE THE FLOOD RIM OF THE HIGHEST FIXTURE ON THE STACK.

4. REFER TO PLUMBING FIXTURE SCHEDULE (P401) FOR PIPE SIZES TO INDIVIDUAL FIXTURES.

5. PROVIDE AND INSTALL TRENCH DRAINS THAT ARE MANUFACTURED WITH A MINIMUM OF 2% (1/4" PER FOOT) SLOPE TO SANITARY PIPING SHOW IN PLANS.
EISENHOWER STATE PARK

PLUMBING ROOF PLAN

SCALE: 1/4" = 1'-0"

14' - 1"
4' 3" VTR
16' - 5"
3' VTR
37' - 10"
3' VTR
22' - 0"
20' - 1"

7291 GLEVIEW DRIVE FORT WORTH, TX 76180
P 817.589.1722
GSBSARCHITECTS.COM

P103

PROJECT NUMBER: 1:10/36

RESTROOM REPLACEMENT

210136
1. Single Insulated Pipe Support Detail
2. Floor Drain (FD-1) Detail
3. Freezeproof Wall Hydrant (FPWH) Detail
4. Gas Connection Detail
5. Interior Floor Penetration Detail

Note: For un insulated pipe, equal to U.L. System #49. For insulated pipe, equal to U.L. System #91.

Details:
- Support at this point deep seal "P" trap fin.

Finishing Details:
- 1½" vent, min.
- 2" waste, min.
- 2" sanitary tee tapped 1¼" wall escutcheon (typical)
- Nibco 604 adapter flex riser to fixture stop valve with replaceable cartridge chrome plated cover tube
- Marvel thread Nibco DWV 802-6 flush trap adapter for fixture type "L" copper pipe

Notes:
- 1 ¼" pipe required for lavatories.
- 1 ½" pipe required for sinks.

Material Specifications:
- Schedule 40 galvanized steel pipe
- Sleeve with welded ¼" thick steel plate collar, hot dip galvanized after fabrication
- Support material (fiberglass insulation, backer rod or safing), need only enough to support weight of CP-25 caulk filling to top of sleeve with acrylic caulk

Insulation Details:
- "CP" style fire barrier caulk. Thickness shall be ½ in. for un insulated pipe and 1 in. for insulated pipe.

Pipe Insulation (where required by spec's):
- Pipe insulation thickness determined by wall thickness.

Supporting Material:
- All hanging piping supports shall be concealed in rafters.

Union Elbow Sweat Connection:
- Approved union to equipment inlet connection

Drip Leg:
- UL & AGA approved gas shut-off valve, Milwaukee Valve Co. Butterball BB2-100

Calcium Silicate Shield:
- Size calcium silicate shield to fit pipe and insulation thickness

Zinc-Coated Saddle:
- 16 gauge zinc coated saddle at least 12" long

Provide Pipe Spacers:
- On lines 2" and larger

Hanger Rod:
- Bent strap over vertical legs of angles

Hanger Nut:
- Support nut

Locking Nut:
- Support nut

Steel Joists:
- Web members (O.W.S.J.) hanger nut

Additional Details:
- Ceiling support details, fixed risers to fixture, UL & AGA approved gas shut-off valve, Nibco 604 adapter flex riser to fixture stop valve with replaceable cartridge, chrome plated cover tube, Marvel thread Nibco DWV 802-6 flush trap adapter for fixture type "L" copper pipe.
NOTE:
1. PROVIDE REDUCER IF REQUIRED BETWEEN VALVE AND WATER HAMMER ARRESTOR.

1" MIN. CLEARANCE

18" MIN. PANEL OPENING

12" MIN. PANEL OPENING

WATER HAMMER ARRESTOR **.

BALL VALVE, SAME NOMINAL SIZE AS PIPE BRANCH IN CHASE. OPENING IN BALL VALVE TO MATCH PIPE I.D.

PIPE SAME SIZE AS BRANCH IN CHASE TO WHICH IT IS ATTACHED.

Piping. See floor plan for sizes. (Typical)

CW SHUT-OFF VALVE (Typical)

AMTROL ST-5C EXPANSION TANK. MOUNT @ 7'-0" A.F.F. MINIMUM.

INSTANTANEOUS WATER HEATER MOUNT @ 3'-0" A.F.F. MINIMUM

NOTES:
1. REFER TO MANUFACTURER DATA FOR APPROVED EFFICIENCY.
2. MANUFACTURER TO PROVIDE TEMPERATURE CONTROLS WITH A SET POINT OF 110 DEG. F.

OFFSET AS NEEDED TO MEET CODE REQUIREMENTS. SLOPE HORIZONTAL PORTIONS BACK TOWARDS HEATER.

INTAKE AIR AND EXHAUST VENT SIZE PER MFG. MANUFACTURER'S concentric vent kit

CHECK VALVE

WATER FILTER

GAS INCOMING COLD WATER SUPPLY TO FIXTURES REQUIRING HOT WATER FROM LP TANK

TYPICAL SINK-LAV PIPING DIAGRAM

WALL CLEANOUT

INSTANTANEOUS WATER HEATER DETAIL

PIPING MANIFOLD DETAIL
PROPANE EQUIPMENT SCHEDULE

<table>
<thead>
<tr>
<th>EQUIPMENT NUMBER</th>
<th>DESCRIPTION</th>
<th>TOTAL BTU PER HOUR</th>
<th>TOTAL GWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH-1</td>
<td>PROPANE WATER HEATER</td>
<td>380,000</td>
<td>120</td>
</tr>
<tr>
<td>GWH-2</td>
<td>PROPANE WATER HEATER</td>
<td>380,000</td>
<td>120</td>
</tr>
<tr>
<td>GWH-3</td>
<td>PROPANE WATER HEATER</td>
<td>380,000</td>
<td>120</td>
</tr>
<tr>
<td>RH-1</td>
<td>PROPANE RADIANT HEATER</td>
<td>40,000</td>
<td>10</td>
</tr>
<tr>
<td>RH-2</td>
<td>PROPANE RADIANT HEATER</td>
<td>40,000</td>
<td>10</td>
</tr>
<tr>
<td>RH-3</td>
<td>PROPANE RADIANT HEATER</td>
<td>40,000</td>
<td>10</td>
</tr>
<tr>
<td>RH-4</td>
<td>PROPANE RADIANT HEATER</td>
<td>40,000</td>
<td>10</td>
</tr>
</tbody>
</table>

TOTALS

<table>
<thead>
<tr>
<th>Description</th>
<th>BTU</th>
<th>GWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALS</td>
<td>1,300,000</td>
<td>1,300</td>
</tr>
</tbody>
</table>

PLUMBING ROUGH-IN SCHEDULE

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>ROUGH-IN MINIMUMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-1</td>
<td>WATER CLOSET</td>
<td></td>
</tr>
<tr>
<td>WC-2</td>
<td>WATER CLOSET</td>
<td></td>
</tr>
<tr>
<td>U-1</td>
<td>URINAL</td>
<td></td>
</tr>
<tr>
<td>L-1</td>
<td>LAVATORY</td>
<td></td>
</tr>
<tr>
<td>L-2</td>
<td>LAVATORY</td>
<td></td>
</tr>
<tr>
<td>EWC-1</td>
<td>ELECTRIC WATER COOLER</td>
<td></td>
</tr>
<tr>
<td>DCLA</td>
<td>DOUBLE CHECK VALVE ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>NB-1/TIMB-1</td>
<td>HOSE BIBB</td>
<td></td>
</tr>
<tr>
<td>MS-1</td>
<td>MOP SINK</td>
<td></td>
</tr>
<tr>
<td>SH-1</td>
<td>SHOWER</td>
<td></td>
</tr>
<tr>
<td>SH-2</td>
<td>SHOWER</td>
<td></td>
</tr>
<tr>
<td>WF</td>
<td>WATER FILTER</td>
<td></td>
</tr>
<tr>
<td>BV</td>
<td>BALL VALVE</td>
<td></td>
</tr>
<tr>
<td>FC0</td>
<td>FLOOR CLEANOUT</td>
<td></td>
</tr>
<tr>
<td>FC1</td>
<td>FLOOR CLEANOUT</td>
<td></td>
</tr>
<tr>
<td>GC0</td>
<td>GROUND CLEANOUT</td>
<td></td>
</tr>
<tr>
<td>WC0</td>
<td>WALL CLEANOUT</td>
<td></td>
</tr>
<tr>
<td>FC0</td>
<td>FLOOR CLEANOUT</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

- Providing for the installation of a concentric vent kit 1 (as noted above).
- Water heaters are to be set at 120°F minimum.

NOTES

1. Provide GWH-1, GWH-2, and GWH-3 with manufacturer's wall concentric vent kit.
2. Water heaters are to be set at 120°F minimum.

SHOCK ARRESTOR SCHEDULE

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>FIXTURE UNITS</th>
<th>PIPE SIZE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1-11</td>
<td>3/4"</td>
<td>2-1/8"</td>
</tr>
<tr>
<td>10</td>
<td>12-32</td>
<td>1"</td>
<td>4"</td>
</tr>
</tbody>
</table>

PROPAINE WATER HEATER SCHEDULE

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>GAS INPUT (BTU/H)</th>
<th>THERMAL EFFICIENCY</th>
<th>V</th>
<th>MIN. PRESSURE</th>
<th>MFR / MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH-1</td>
<td>380,000</td>
<td>52%</td>
<td>120</td>
<td>10</td>
<td>AO SMITH</td>
</tr>
<tr>
<td>GWH-2</td>
<td>380,000</td>
<td>52%</td>
<td>120</td>
<td>10</td>
<td>AO SMITH</td>
</tr>
<tr>
<td>GWH-3</td>
<td>380,000</td>
<td>52%</td>
<td>120</td>
<td>10</td>
<td>AO SMITH</td>
</tr>
</tbody>
</table>

NOTES

1. Provide GWH-1, GWH-2, and GWH-3 with manufacturer's wall concentric vent kit.
2. Water heaters are to be set at 120°F minimum.

THERM. MIXING VALVE SCHEDULE

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>TEMP. IN °F</th>
<th>TEMP. OUT °F</th>
<th>MIN. FLOW (GPM)</th>
<th>MAX. FLOW (GPM)</th>
<th>VALVE FINISH</th>
<th>THERMOMETER</th>
<th>UNION CONNN.</th>
<th>PRESS. DIFF.</th>
<th>MFR / MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMV-1</td>
<td>120</td>
<td>105</td>
<td>0.5</td>
<td>12</td>
<td>RB</td>
<td>No</td>
<td>Yes</td>
<td>5.0</td>
<td>ALF/MV</td>
</tr>
</tbody>
</table>

NOTE

TMV-1 is located at all sinks and lavatories. One TMV may serve two restrooms/lavatories.
PLUMBING FIXTURE SCHEDULE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FIXTURE DESCRIPTION</th>
<th>CARRIER</th>
<th>P-TRAP</th>
<th>ROUGH-INS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-1</td>
<td>WATER CLOSET, WALL MOUNTED, WHITE VITREOUS CHINA, 1 1/2” GALLON PER FLUSH SIPHON-JET ACTION, ELONGATED BOWL, PROVIDE WITH ELONGATED OPEN FRONT WHITE PLASTIC SEAT WITH SELF-SUSTAINING CHECK HINGES MODEL CHURCH #9500C, WITH 1-1/2” TOP SPUD AND BOLT CORNERS, AMERICAN STANDARD “AFWALL” #3031.101.</td>
<td>SMITH #011</td>
<td>1-1/4” 17 GAUGE CHROME PLATED HEAVY CAST BRASS TRAP WITH CLEANSOUT AND EXTENSION TO WALL WITH EWC-1 PLUMBING FIXTURE, MCGUIRE #2872.</td>
<td>0” WASTE, 2” VENT</td>
<td>MOUNT FLUSH VALVE OPERATING BUTTON ON ACCESSIBLE SIDE.</td>
</tr>
<tr>
<td>WC-2</td>
<td>WATER CLOSET, WALL MOUNTED, WHITE VITREOUS CHINA A.D.A.F.S, 1 1/2” GALLONS PER FLUSH SIPHON JET ACTION, ELONGATED BOWL, PROVIDE WITH ELONGATED OPEN FRONT WHITE PLASTIC SEAT WITH SELF-SUSTAINING CHECK HINGES MODEL CHURCH #9500C, WITH 1-1/2” NPT FLUSH VALVE CONNECTION AND A GASKETTED WASTE OUTLET, AMERICAN STANDARD “AFWALL” #3031.101.</td>
<td>SMITH #011</td>
<td>1-1/4” 17 GAUGE CHROME PLATED HEAVY CAST BRASS TRAP WITH CLEANSOUT AND EXTENSION TO WALL WITH EWC-1 PLUMBING FIXTURE, MCGUIRE #2872.</td>
<td>0” WASTE, 2” VENT</td>
<td>MOUNT FLUSH VALVE OPERATING BUTTON ON ACCESSIBLE SIDE.</td>
</tr>
<tr>
<td>L-1</td>
<td>LAVATORY, COUNTER MOUNTED, WHITE VITREOUS CHINA, 1 1/2” GALLON PER FLUSH SIPHON JET ACTION, INTEGRAL TRAP, AMERICAN STANDARD “WASHBROOK” #8900.025, MOUNT SO THAT RM OF BASIN IS 14” MAX AFF TO MEET F.A.S. REQUIREMENTS.</td>
<td>RECTANGULAR STEEL TUBING UPRIGHTS WITH WELDED 4” SQUARE BASE ANCHORED TO CONCRETE WITH (4) 1/2” BOLTS, ADJUSTABLE SLEEVE, UPPER AND LOWER BEARING PLATES WITH THREADED STUDS. WADE #4040.00-J1-M1.</td>
<td>0.125 GALLON FLUSH CYCLE, HARDWARE, (2) TRAPS, EXPOSED, DIAPHRAGM TYPE, POLISHED CHROME FINISH LAVATORY, FLUSHMETER, VACUUM BREAKER, SPUD COUPLING FOR 3/4” TOP SPUD SLOAN ROYAL #5166-0.125-MO-HW.</td>
<td>2” WASTE, 2” VENT, 3/4” C/W</td>
<td>VERIFY ALL HEIGHT REQUIREMENTS WITH ARCHITECTURAL DRAWINGS.</td>
</tr>
<tr>
<td>U-1</td>
<td>URINAL, WALL HUNG, WHITE VITREOUS CHINA, 0.5 GALLON PER FLUSH SIPHON JET ACTION, INTEGRAL TRAP, AMERICAN STANDARD “WASHBROOK” #8900.025, MOUNT SO THAT RM OF BASIN IS 14” MAX AFF TO MEET F.A.S. REQUIREMENTS.</td>
<td>RECTANGULAR STEEL TUBING UPRIGHTS WITH WELDED 4” SQUARE BASE ANCHORED TO CONCRETE WITH (4) 1/2” BOLTS, ADJUSTABLE SLEEVE, UPPER AND LOWER BEARING PLATES WITH THREADED STUDS. WADE #4040.00-J1-M1.</td>
<td>0.125 GALLON FLUSH CYCLE, HARDWARE, (2) TRAPS, EXPOSED, DIAPHRAGM TYPE, POLISHED CHROME FINISH URINAL, FLUSHMETER, VACUUM BREAKER, SPUD COUPLING FOR 3/4” TOP SPUD SLOAN ROYAL #5166-0.125-MO-HW.</td>
<td>2” WASTE, 2” VENT, 3/4” C/W</td>
<td>VERIFY ALL HEIGHT REQUIREMENTS WITH ARCHITECTURAL DRAWINGS.</td>
</tr>
</tbody>
</table>

PLUMBING EQUIPMENT SCHEDULE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FIXTURE DESCRIPTION</th>
<th>CARRIER</th>
<th>P-TRAP</th>
<th>ROUGH-INS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCV-1</td>
<td>LEAD FREE DOUBLE CHECK VALVE ASSEMBLY WITH STRAINER, WATTS MODEL #LF007T12-S.</td>
<td>ICORR 316 SS</td>
<td>2” CW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-1</td>
<td>HOSE BIB, WITH TAPERMOLD PROOF VACUUM BREAKER, INTERIOR - WATTS RSC-4. EXTERIOR - WATTS #H420-12.</td>
<td>ICORR 316 SS</td>
<td>3/4” C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-1</td>
<td>1 1/2” X 2 1/2” X 1 1/2” 3” 4” X 3” 2” 1” C/W, 3/4” 1/2” 1/2” 3/4” W/H.</td>
<td>ICORR 316 SS</td>
<td>3/4” C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH-1</td>
<td>WASHBASIN - WASH BOWL, FRONT MOUNTED, RECESSED SHOWER HEAD - ADA COMPLIANT.</td>
<td>ICORR 316 SS</td>
<td>3/4” C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH-2</td>
<td>WASHBASIN - WASH BOWL, FRONT MOUNTED, RECESSED SHOWER HEAD - ADA COMPLIANT.</td>
<td>ICORR 316 SS</td>
<td>3/4” C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV-1</td>
<td>LEAD-FREE, STANDARD PORT, COPPER SILICON BALL VALVE, WATTS #FB8000</td>
<td>2” CW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td>FLOOR DRAIN FOR TOILET ROOMS, AND GENERAL AREAS: ICORR 316 SS</td>
<td>2” CW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>WALL DRAIN, CAST IRON FERRULE WITH TAPERED BRASS: CADWORTH #6550-2.5” WITH NICKEL BRONZE SCREWS SCREWED IN COVER. WATTS #C0-155.</td>
<td>2” CW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>WALL DRAIN, CAST IRON FERRULE WITH TAPERED BRASS: CADWORTH #6550-2.5” WITH NICKEL BRONZE SCREWS SCREWED IN COVER. WATTS #C0-155.</td>
<td>2” CW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ALL LAVATORIES AND SINKS SHALL BE SUPPLIED WITH HOT AND COLD WATER TO FAUCETS AS INDICATED ON PLANS AND FIXTURE SCHEDULE. PROVIDE CHROME PLATED BRASS FAUCETS, EXPOSED TRAPS, WITH LOOSE KEYS AND WALL EWCUTCHEONS. PROVIDE BRAIDED STAINLESS STEEL RISER HOSES OF SIZE REQUIRED TO PROPERLY CONNECT FIXTURES. PROVIDE (3) 1/4” NPT MACHINES, (3) 1/2” CHROME FINISH MACHINES, (3) 1/2” CHROME FINISH MACHINES. PROVIDE ALL FIXTURES SHALL BE ACCESSIBLE. PROVIDE MCUIRE "PROWRAP" INSULATION KITS ON ALL LAVATORIES AND SINKS REQUIRED TO BE T.A.S. ACCESSIBLE. ALL FIXTURES SHALL COMPLY WITH THE STATE ACCESSIBILITY STANDARDS REQUIRE.
NEW 6” SANITARY SEWER. REFER TO CIVIL.

3" VTR

2" V

3" SS

EWC - 1

L - 2

WC - 2

4" FCO

3" FCO

3" TD

WC - 1

3" TD

WC - 2

3" TD

U - 1

L - 1

L - 1

4" SS

2" SS

3" V

4" SS

5" CONCENTRIC VENT FROM GWH - 1 THRU WALL

3" TD

3" FD

3" SS

3" SS

GWH - 2

GWH - 3

GWH - 1

3" SS

4" SS

3" SS

4" SS

3" V

3" TD

3" TD

3" FD

3" V

2" V
PROPANE PIPING IS ROUTED UP THE EXTERIOR WALL AND ENTERS THE BUILDING CONCEALED ABOVE THE CEILING.

INTERIOR PROPANE PIPING IS ROUTED CONCEALED IN THE RAFTERS. TYP.

1/2" PROPANE
1 1/4" PROPANE
1 1/2" PROPANE
3/4" PROPANE
380 MBH
1,300 MBH TOTAL
ELECTRICAL ABBREVIATIONS, SYMBOLS, AND NOTES

LIGHT FIXTURES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Symbol</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLP</td>
<td>DLP</td>
<td>Duplex Receptacle</td>
</tr>
<tr>
<td>JP</td>
<td>JP</td>
<td>Junction Box</td>
</tr>
<tr>
<td>QDE</td>
<td>QDE</td>
<td>Quadraplex Receptacle</td>
</tr>
<tr>
<td>No. INDICATE</td>
<td>No.</td>
<td>Number Indicates Circuit</td>
</tr>
<tr>
<td>4'</td>
<td>4'</td>
<td>4 Feet</td>
</tr>
<tr>
<td>PENDANT LIGHT</td>
<td>PENDANT</td>
<td>Pendant Light Fixtures</td>
</tr>
<tr>
<td>SUSPENDED LIGHT</td>
<td>SUSPENDED</td>
<td>Suspended Light Fixtures</td>
</tr>
<tr>
<td>DOWN</td>
<td>DOWN</td>
<td>Down Light Fixtures</td>
</tr>
<tr>
<td>SWITCH</td>
<td>SWITCH</td>
<td>Switches</td>
</tr>
</tbody>
</table>

OUTLETS & RECEPTACLES

- **DUPLEX RECEPTACLE**: A receptacle designed to accommodate two plugs simultaneously.
- **JUNCTION BOX**: A box used to connect or switch other electrical components.
- **QUADRAPLEX RECEPTACLE**: A receptacle designed to accommodate four plugs simultaneously.
- **NUMBER INDICATES CIRCUIT**: A method to identify the circuit to which a receptacle belongs.
- **4’**: A measurement indicating the length of a cable or wire.
- **PENDANT LIGHT FIXTURE**: Light fixtures suspended from the ceiling.
- **SUSPENDED DOWN LIGHT FIXTURE**: Light fixtures that hang downward from the ceiling.
- **SWITCH**: An electrical device used to control the flow of current.

WIRING

1. **Ground Wire (Filled Circle)**: Indicates the ground wire in the electrical system.
2. **Isolated Ground Wire (Open Circle)**: Indicates an isolated ground wire.
3. **Isolated Ground Panel Board**: A panel board with isolated ground connections.
4. **UPPERCASE LETTER**: Indicates the type of fixture, referring to the fixture schedule.

TRANSFORMERS & PANELS

- **SWITCHES & MISC.**: Includes various switches and miscellaneous components.
- **CEILING MOUNTED OCCUPANCY SENSOR - COMBINATION**: A sensor that combines movement and light detection.
- **MOTOR SWITCH**: A device used to control the operation of a motor.
- **NON-FUSED DISCONNECT SWITCH**: A switch that does not include a fuse for disconnecting the circuit.
- **MOBILE HOME OCCUPANCY**: An occupancy sensor designed for mobile homes.
- **CONTRACTOR'S PANEL BOARD**: A panel board designed for contractors.
- **GROUND PANEL BOARD**: A panel board with ground connections.

GENERAL NOTES

- **E001**: ELECTRICAL COVER SHEET
- **7291 GLEVIEW DRIVE FORT WORTH, TX 76180 P 817.589.1722 GSBSARCHITECTS.COM**: Contact and location information.
- **RESTROOM REPLACEMENT**: Project description.

LIGHT FIXTURE LABELING

1. **NOTE**: All symbols may not be used.
2. **LIGHT FIXTURES OUTLETS & RECEPTACLES TRANSFORMERS & PANELS ABBREVIATIONS WIRING GENERAL NOTES**: A guideline for using the symbols and abbreviations in the electrical drawings.
3. **DUPLEX RECEPTACLE**: A receptacle designed to accommodate two plugs simultaneously.
4. **JUNCTION BOX**: A box used to connect or switch other electrical components.

CONTRACTOR'S REQUIREMENTS

1. **LIGHT FIXTURES, OUTLETS, RECEPTACLES, TRANSFORMERS, PANELS, AND WIRING**: A list of requirements for the installation of electrical fixtures, outlets, receptacles, transformers, panels, and wiring.
2. **CONTRACTOR'S PANEL BOARD**: A panel board designed for contractors.
3. **GROUND PANEL BOARD**: A panel board with ground connections.

PROJECT NUMBER

- **7291 GLEVIEW DRIVE FORT WORTH, TX 76180**: Project location.
- **P 817.589.1722 GSBSARCHITECTS.COM**: Contact information.
LEGEND

1. EXISTING OVERHEAD ELECTRIC LINE
2. UNDERGROUND ELECTRIC LINE
3. DEMOLITION

GENERAL NOTES:

1. PER THE ONCOR GENERAL REQUIREMENTS, THE UTILITY WILL PROVIDE THE POWER POLE, OVERHEAD WIRE, TRANSFORMERS, RISER, SECONDARY WIRE, AND METER. COORDINATE ALL SERVICE CONNECTIONS WITH ONCOR.

ONCOR CONTACT:
BAILEY BOWERS
UTILITY DESIGNER
ONCOR – PMDS
TEXOMA DISTRICT
2201 WOODLAKE RD.
DENISON, TX 75021
TEL: 903-436-2371

2. REFER TO RISER DIAGRAM FOR ADDITIONAL SERVICE DETAILING.

3. PROVIDE TEMPORARY FOR CONSTRUCTION AND CONSTRUCTION TRAILER.

4. TPWD TO PAY FOR ALL UTILITY FEES FOR PERMANENT POWER IN A SEPARATE CONTRACT.

NOTES BY SYMBOL:

1. EXISTING UNDERGROUND FEEDERS TO SEPTIC STATION TO REMAIN.
2. REMOVE EXISTING 200A SERVICE PANELBOARD, METER, AND CIRCUIT BREAKERS. PROVIDE UL-LISTED DIRECT BURIED POLARIS BLOCKS AND EXTEND (3)#4, #4G WIRE IN 1-1/2" CONDUIT TO PANEL P2.

SCALE: 1/2" = 1'-0"
LIGHTING GENERAL NOTES:

1. Coordinate heights of suspended fixtures with architectural ceiling elevations prior to rough-in.
2. Coordinate location of lighting control devices with door swings and mechanical control devices.
3. Coordinate mounting heights of exterior light fixtures with architectural elevations prior to rough-in.
4. Provide lighting control devices compatible with fixtures installed. Occupancy sensors shall be dual technology.
5. Provide all necessary hardware and accessories to stem mount scheduled light fixtures.
6. Confirm all lighting fixture finishes with architect prior to procurement.

NOTES BY SYMBOL:

- LIGHTING CONTACTOR
- PHOTOSENSORS
- ASTRONOMICAL TIMECLOCK
- EXTERIOR LIGHT FIXTURES
- JUNCTION BOX
- FAN TO STRUCTURE
- FINAL LIGHT FIXTURE LOCATIONS
- DISCIPLINES
- WALL EDGES

LIGHTING FIXTURE SCHEDULE:

<table>
<thead>
<tr>
<th>Type</th>
<th>Manufacturer</th>
<th>Description</th>
<th>Mounting Model</th>
<th>Lamp Voltage</th>
<th>Power</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXIT SIGN</td>
<td></td>
<td>SURFACE MOUNT EDGE-LIT WHITE HOUSING WITH GREEN LETTERING, BATTERY BACKUP</td>
<td>W-EDG-E-2-G</td>
<td>120 V</td>
<td>5 W</td>
<td></td>
</tr>
</tbody>
</table>

1 PROVIDE LIGHTING CONTACTOR WITH PHOTOSENSOR AND ASTRONOMICAL TIMECLOCK FOR EXTERIOR LIGHT CONTROL. EXTERNALLY MOUNT JUNCTION BOX FOR CONNECTION OF FAN TO STRUCTURE. COORDINATE FINAL LIGHT FIXTURE LOCATIONS IN CHASE WITH DISCIPLINES.
GENERAL NOTES:
1. ALL CIRCUITS SHALL BE CONNECTED IN POWER CONDUIT. ALL POWER CONDUIT SHALL CONTAIN A MINIMUM OF ONE EQUIPMENT GROUNDING CONDUCTOR. PROVIDE A DEDICATED NEUTRAL FOR EACH SINGLE POLE CIRCUIT. SHARED NEUTRALS ARE NOT ALLOWED.
2. REFER TO ARCHITECTURAL ELEVATIONS FOR ADDITIONAL EQUIPMENT COORDINATION.
3. CONDUCTORS SHALL BE #12 THHN/THWN COPPER AND ALL CONDUIT SHALL BE 3/4" UNLESS OTHERWISE NOTED.
4. ALL CIRCUITS ARE SHOWN SCHEMATICALLY. FINAL ROUTING DECISIONS ARE BY THE CONTRACTOR.
5. ALL WP FIXTURES ARE TO BE DIECAST IN USE.
6. ALL DISCONNECT SWITCHES SHOULD BE NEMA 3R.
7. PROVIDE RELAY CONTROL FOR EXHAUST FANS TO BE CONTROLLED WITH BATHROOM LIGHTS.
8. PROVIDE PLANS/CONDUCTORS FOR CHARGING STATIONS.

POWER PLAN