SPECIFICATION TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>COVER SHEET</td>
</tr>
<tr>
<td>000100</td>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>000107</td>
<td>PROJECT DIRECTORY</td>
</tr>
</tbody>
</table>

DIVISION 0 – PROCUREMENT AND CONTRACTING FORMS
(Other Sections Issued By Construction Manager)

| 003126 | EXISTING HAZARDOUS MATERIAL INFORMATION |
| 003132 | GEOTECHNICAL DATA |

DIVISION 1 - GENERAL REQUIREMENTS

| 017419 | CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL |

DIVISION 2 - EXISTING CONDITIONS

| 024116 | STRUCTURE DEMOLITION |

DIVISION 3 – CONCRETE
(Refer to Structural Documents for Additional Information this Division)

| 033000 | CAST-IN-PLACE CONCRETE |
| 033501 | CONCRETE FINISHING |

DIVISION 4 – MASONRY

| 042200 | CONCRETE UNIT MASONRY |

DIVISION 5 – METALS
(Refer to Structural Documents for Additional Information this Division)

051200	STRUCTURAL STEEL
054000	COLD-FORMED METAL FRAMING
055000	METAL FABRICATIONS

DIVISION 6 - WOOD AND PLASTICS

| 061000 | ROUGH CARPENTRY |
| 061600 | SHEATHING |
062013 EXTERIOR FINISH CARPENTRY

DIVISION 7 - THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>071326</td>
<td>SELF-ADHERING SHEET WATERPROOFING</td>
</tr>
<tr>
<td>071900</td>
<td>WATER REPELLENTS</td>
</tr>
<tr>
<td>072100</td>
<td>THERMAL INSULATION</td>
</tr>
<tr>
<td>072726</td>
<td>FLUID APPLIED MEMBRANE AIR BARRIERS</td>
</tr>
<tr>
<td>074113.16</td>
<td>STANDING SEAM METAL ROOF PANELS</td>
</tr>
<tr>
<td>076200</td>
<td>SHEET METAL FLASHING AND TRIM</td>
</tr>
<tr>
<td>077100</td>
<td>ROOF SPECIALTIES</td>
</tr>
<tr>
<td>077200</td>
<td>ROOF ACCESSORIES</td>
</tr>
<tr>
<td>077253</td>
<td>SNOW GUARDS</td>
</tr>
<tr>
<td>079200</td>
<td>JOINT SEALANTS</td>
</tr>
</tbody>
</table>

DIVISION 8 - DOORS AND WINDOWS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>081113</td>
<td>HOLLOW METAL DOORS AND FRAMES</td>
</tr>
<tr>
<td>083113</td>
<td>ACCESS DOORS AND FRAMES</td>
</tr>
<tr>
<td>084113</td>
<td>ALUMINUM-FRAMED STOREFRONTS</td>
</tr>
<tr>
<td>087100</td>
<td>DOOR HARDWARE</td>
</tr>
<tr>
<td>088000</td>
<td>GLAZING</td>
</tr>
</tbody>
</table>

DIVISION 9 – FINISHES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>096723</td>
<td>RESINOUS FLOORING</td>
</tr>
<tr>
<td>099113</td>
<td>EXTERIOR PAINTING</td>
</tr>
<tr>
<td>099123</td>
<td>INTERIOR PAINTING</td>
</tr>
<tr>
<td>099300</td>
<td>STAINING AND TRANSPARENT FINISHING</td>
</tr>
</tbody>
</table>

DIVISION 10 – SPECIALTIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101423</td>
<td>PANEL SIGNAGE</td>
</tr>
<tr>
<td>102113.14</td>
<td>STAINLESS-STEEL TOILET COMPARTMNETS</td>
</tr>
<tr>
<td>102800</td>
<td>TOILET, BATH, AND LAUNDRY ACCESSORIES</td>
</tr>
<tr>
<td>104413</td>
<td>FIRE PROTECTION CABINETS</td>
</tr>
<tr>
<td>104416</td>
<td>FIRE EXTINGUISHERS</td>
</tr>
</tbody>
</table>

DIVISION 11 – EQUIPMENT

* (NONE THIS SECTION) *

DIVISION 12 – FURNISHINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>123661.19</td>
<td>QUARTZ AGGLOMERATE COUNTERTOPS</td>
</tr>
</tbody>
</table>
DIVISION 13 – SPECIAL CONSTRUCTION
(NONE THIS SECTION)

DIVISION 14 - CONVEYING EQUIPMENT
(NONE THIS SECTION)

DIVISION 21 – FIRE SUPPRESSION
(NONE THIS SECTION)

DIVISION 22 – PLUMBING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>220500</td>
<td>COMMON WORK RESULTS FOR PLUMBING</td>
</tr>
<tr>
<td>220517</td>
<td>SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220519</td>
<td>METERS AND GAGES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220523</td>
<td>GENERAL-DUTY VALVES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220529</td>
<td>HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220719</td>
<td>PLUMBING PIPING INSULATION</td>
</tr>
<tr>
<td>221116</td>
<td>DOMESTIC WATER PIPING</td>
</tr>
<tr>
<td>221314</td>
<td>STORM DRAINAGE, SANITARY WASTE, AND VENT PIPING</td>
</tr>
<tr>
<td>223400</td>
<td>FUEL-FIRED, DOMESTIC WATER HEATERS</td>
</tr>
<tr>
<td>224000</td>
<td>PLUMBING FIXTURES</td>
</tr>
<tr>
<td>224019</td>
<td>PLUMBING SPECIALTIES</td>
</tr>
<tr>
<td>224223</td>
<td>COMMERCIAL SHOWERS</td>
</tr>
</tbody>
</table>

DIVISION 23 – HEATING VENTILATING AND AIR CONDITIONING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>230510</td>
<td>BASIC MECHANICAL REQUIREMENTS</td>
</tr>
<tr>
<td>230513</td>
<td>COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT</td>
</tr>
<tr>
<td>230529</td>
<td>HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>230553</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>230593</td>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
</tr>
<tr>
<td>233113</td>
<td>METAL DUCTS</td>
</tr>
<tr>
<td>233300</td>
<td>AIR DUCT ACCESSORIES</td>
</tr>
<tr>
<td>233423</td>
<td>HVAC POWER VENTILATORS</td>
</tr>
<tr>
<td>233713</td>
<td>DIFFUSERS, REGISTERS, AND GRILLES</td>
</tr>
<tr>
<td>235523</td>
<td>GAS-FIRED, RADIANT HEATERS</td>
</tr>
<tr>
<td>238239</td>
<td>UNIT HEATERS</td>
</tr>
<tr>
<td>238323</td>
<td>RADIANT-HEATING ELECTRIC PANELS</td>
</tr>
</tbody>
</table>

DIVISION 26 – ELECTRICAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>COMMON WORK RESULTS FOR ELECTRICAL</td>
</tr>
<tr>
<td>260519</td>
<td>LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES</td>
</tr>
</tbody>
</table>

100 CONSTRUCTION DOCUMENTS TABLE OF CONTENTS 01.22.2021
Page 3 of 4
260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
260543 UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS
260544 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAY AND CABLING
260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
260923 LIGHTING CONTROL DEVICES
262416 PANELBOARDS
262726 WIRING DEVICES
262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
265119 LED INTERIOR LIGHTING
265219 EMERGENCY AND EXIT LIGHTING
265619 LED EXTERIOR LIGHTING

DIVISION 27 – COMMUNICATIONS
(NONE THIS SECTION)

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY
(NONE THIS SECTION)

DIVISION 31 – EARTHWORK

311000 SITE PREPARATION AND DEMOLITION
312200 EARTHWORK
312333 TRENCH EXCAVATION
312334 TRENCH BACKFILL
312335 TRENCH SAFETY SYSTEM
312500 EROSION CONTROL
313116 TERMITE CONTROL

DIVISION 32 – EXTERIOR IMPROVEMENTS

321216 ASPHALT PAVING
321313 CONCRETE PAVING
321723 PAVEMENT MARKING
328400 PLANTING IRRIGATION
329200 TURF AND GRASSES

DIVISION 33 – UTILITIES

331000 WATER UTILITIES
333000 SANITARY SEWERAGE UTILITIES

APPENDIX 01 GEOTECHNICAL EXHIBIT
APPENDIX 02 ASBESTOS ABATEMENT WORK PLAN
PROJECT DIRECTORY:

Architect:

GSBS Architects
7291 Glenview Drive
North Richland Hills, Texas 76180
Ph. 817-589-1722
Fax. 817-595-2916
PIC Contact: Sam T Jones, ASLA
PM Contact: Nick Palluth, AIA, LEED AP BD+C

DIVISION 1 - GENERAL REQUIREMENTS
017419 CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

DIVISION 2 - EXISTING CONDITIONS
024116 STRUCTURE DEMOLITION

DIVISION 3 – CONCRETE
035001 CONCRETE FINISHING

DIVISION 4 – MASONRY
042200 CONCRETE UNIT MASONRY

DIVISION 5 – METALS
054000 COLD-FORMED METAL FRAMING
055000 METAL FABRICATIONS

DIVISION 6 - WOOD AND PLASTICS
061600 SHEATHING

DIVISION 7 - THERMAL AND MOISTURE PROTECTION
071326 SELF-ADHERING SHEET WATERPROOFING
071900 WATER REPPELLENTS
072100 THERMAL INSULATION
072726 FLUID APPLIED MEMBRANE AIR BARRIERS
074113.16 STANDING SEAM METAL ROOF PANELS
076200 SHEET METAL FLASHING AND TRIM
077100 ROOF SPECIALTIES
077200 ROOF ACCESSORIES
077253 SNOW GUARDS
079200 JOINT SEALANTS

DIVISION 8 - DOORS AND WINDOWS
081113 HOLLOW METAL DOORS AND FRAMES
083113 ACCESS DOORS AND FRAMES
084113 ALUMINUM-FRAMED STOREFRONTS
087100 DOOR HARDWARE
088000 GLAZING

DIVISION 9 – FINISHES
096723 RESINOUS FLOORING
099113 EXTERIOR PAINTING
099123 INTERIOR PAINTING
099300 STAINING AND TRANSPARENT FINISHING

DIVISION 10 – SPECIALTIES
101423 PANEL SIGNAGE
102113.14 STAINLESS-STEEL TOILET COMPARTMENTS
102800 TOILET, BATH, AND LAUNDRY ACCESSORIES
104413 FIRE PROTECTION CABINETS
104416 FIRE EXTINGUISHERS

DIVISION 12 – FURNISHINGS
123661.19 QUARTZ AGGLOMERATE COUNTERTOPS

DIVISION 31 – EARTHWORK
313116 TERMITE CONTROL

Structural Engineer:

JQ Engineering
TBPE Firm # F-7986
3017 West 7th Street, Suite 400
Fort Worth, TX 76107
Ph. 817-505-4307
Contact: David Walker

DIVISION 3 – CONCRETE
033000 CAST-IN-PLACE CONCRETE

DIVISION 5 – METALS
051200 STRUCTURAL STEEL

DIVISION 6 - WOOD AND PLASTICS
061000 ROUGH CARPENTRY
MEP Engineers:

B&H Engineers, Inc.
TBPE Firm # 9102
511 E John Carpenter Fwy #250
Irving, Texas 75062
Ph. 214-496-1670
PIC Contact: Chris Sims
Mechanical and Plumbing: Chris Sims
Electrical: Xiaobo Wang

DIVISION 22 – PLUMBING
220500 COMMON WORK RESULTS FOR PLUMBING
220517 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
220519 METERS AND GAGES FOR PLUMBING PIPING
220523 GENERAL-DUTY VALVES FOR PLUMBING PIPING
220529 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
220719 PLUMBING PIPING INSULATION
221116 DOMESTIC WATER PIPING
221314 STORM DRAINAGE, SANITARY WASTE, AND VENT PIPING
223400 FUEL-FIRED, DOMESTIC WATER HEATERS
224000 PLUMBING FIXTURES
224019 PLUMBING SPECIALTIES
224223 COMMERCIAL SHOWERS

DIVISION 23 – HEATING VENTILATING AND AIR CONDITIONING
230510 BASIC MECHANICAL REQUIREMENTS
230513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
230529 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
230593 TESTING, ADJUSTING, AND BALANCING FOR HVAC
233113 METAL DUCTS
233300 AIR DUCT ACCESSORIES
233423 HVAC POWER VENTILATORS
233713 DIFFUSERS, REGISTERS, AND GRILLES
235523 GAS-FIRED, RADIANT HEATERS
238239 UNIT HEATERS
238323 RADIANT-HEATING ELECTRIC PANELS

DIVISION 26 – ELECTRICAL
260500 COMMON WORK RESULTS FOR ELECTRICAL
260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
260543 UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS
260544 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAY AND CABLING
260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
260923 LIGHTING CONTROL DEVICES
262416 PANELBOARDS
262726 WIRING DEVICES
262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
265119 LED INTERIOR LIGHTING
265219 EMERGENCY AND EXIT LIGHTING
265619 LED EXTERIOR LIGHTING

100 CONSTRUCTION DOCUMENTS
Landscape Architect:

GSBS Architects
7291 Glenview Drive
North Richland Hills, Texas 76180
Ph. 817-589-1722
Fax. 817-595-2916
Contact: Sam T Jones, ASLA

DIVISION 31 – EARTHWORK
311000 SITE PREPARATION AND DEMOLITION
312200 EARTHWORK
312333 TRENCH EXCAVATION
312334 TRENCH BACKFILL
312335 TRENCH SAFETY SYSTEM
312500 EROSION CONTROL

DIVISION 32 – EXTERIOR IMPROVEMENTS
328400 PLANTING IRRIGATION
329200 TURF AND GRASSES

Civil Engineer:

JQ Engineering
TBPE Firm # F-7986
100 Glass Street
Dallas, Texas 75207
Ph. 214-623-5862
Contact: Darin Jennings

DIVISION 31 – EARTHWORK
311000 SITE PREPARATION AND DEMOLITION
312200 EARTHWORK
312333 TRENCH EXCAVATION
312334 TRENCH BACKFILL
312335 TRENCH SAFETY SYSTEM
312500 EROSION CONTROL

DIVISION 32 – EXTERIOR IMPROVEMENTS
321216 ASPHALT PAVING
321313 CONCRETE PAVING
321723 PAVEMENT MARKING

DIVISION 33 – UTILITIES
331000 WATER UTILITIES
333000 SANITARY SEWERAGE UTILITIES
1.1 EXISTING HAZARDOUS MATERIAL INFORMATION

A. This Document with its referenced attachments is part of the Procurement and Contracting Requirements for Project. They provide Owner's information for Bidders' convenience and are intended to supplement rather than serve in lieu of Bidders' own investigations. They are made available for Bidders' convenience and information, but are not a warranty of existing conditions. This Document and its attachments are not part of the Contract Documents.

B. An existing asbestos report for Project, prepared by Farmer Environmental Group dated August 25, 2020, is available for viewing as appended to this Document.

C. Related Requirements:
 1. Document 003132 "Geotechnical Data" for reports and soil-boring data from geotechnical investigations that are made available to bidders.
 2. Section 024116 "Structure Demolition" for notification requirements if materials suspected of containing hazardous materials are encountered.

END OF DOCUMENT 003126
SECTION 003132 – GEOTECHNICAL DATA

1.1 GENERAL

A. This Document with its referenced attachments is part of the Procurement and Contracting Requirements for Project. They provide Owner's information for Bidders' convenience and are intended to supplement rather than serve in lieu of Bidders' own investigations. They are made available for Bidders' convenience and information. This Document and its attachments are not part of the Contract Documents.

B. Because subsurface conditions indicated by the soil borings are a sampling in relation to the entire construction area, and for other reasons, the Owner, the Architect, the Architect's consultants, and the firm reporting the subsurface conditions do not warranty the conditions below the depths of the borings or that the strata logged from the borings are necessarily typical of the entire site. Any party using the information described in the soil borings and geotechnical report shall accept full responsibility for its use.

C. The geotechnical data is available as appended to this Document, see appendix 01.

1. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from the data.

D. Refer to the Geotechnical Report # G201372 by Alpha Testing Inc., dated August 14, 2020 for the existing conditions of the project.

END OF SECTION 003132
SECTION 017419 - CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes administrative and procedural requirements for the following:
 1. Disposing of nonhazardous demolition and construction waste.

1.3 DEFINITIONS
 A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
 B. Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.
 C. Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.
 D. Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.

1.4 ACTION SUBMITTALS
 A. Waste Management Plan: Submit plan within 7 days of date established for Notice to Proceed.

1.5 QUALITY ASSURANCE
 A. Refrigerant Recovery Technician Qualifications: Certified by EPA-approved certification program.
 B. Regulatory Requirements: Comply with hauling and disposal regulations of authorities having jurisdiction.
1.6 WASTE MANAGEMENT PLAN

A. General: Develop a waste management plan according to ASTM E 1609 and requirements in this Section. Plan shall consist of waste identification, waste reduction work plan, and cost/revenue analysis. Distinguish between demolition and construction waste. Indicate quantities by weight or volume, but use same units of measure throughout waste management plan.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PLAN IMPLEMENTATION

A. General: Implement approved waste management plan. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.

1. Comply with operation, termination, and removal requirements in Section 015000 "Temporary Facilities and Controls."

B. Waste Management Coordinator: Engage a waste management coordinator to be responsible for implementing, monitoring, and reporting status of waste management work plan.

C. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work.

1. Distribute waste management plan to everyone concerned within three days of submittal return.

D. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

1. Designate and label specific areas on Project site necessary for separating materials that are to be recycled.
2. Comply with Section 015000 "Temporary Facilities and Controls" for controlling dust and dirt, environmental protection, and noise control.

3.2 DISPOSAL OF WASTE

A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
1. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn waste materials.

C. Disposal: Remove waste materials from Owner's property and legally dispose of them.

END OF SECTION 017419
SECTION 024116 - STRUCTURE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Demolition and removal of buildings and site improvements.
 2. Removing below-grade construction.
 3. Disconnecting, capping or sealing, and removing site utilities.
 4. Salvaging items for reuse by Owner.

B. Related Requirements:
 1. Section 011000 "Summary" for use of the premises and phasing requirements.
 2. Section 013200 "Construction Progress Documentation" for preconstruction photographs taken before building demolition.
 3. Section 311000 "Site Clearing" for site clearing and removal of above- and below-grade site improvements not part of building demolition.

1.3 DEFINITIONS

A. Remove: Detach items from existing construction and dispose of them off-site unless indicated to be salvaged.

B. Remove and Salvage: Detach items from existing construction, in a manner to prevent damage, and deliver to Owner. Include fasteners or brackets needed for reattachment elsewhere.

1.4 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.
1.5 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project site.
 1. Inspect and discuss condition of construction to be demolished.
 2. Review structural load limitations of existing structures.
 3. Review and finalize building demolition schedule and verify availability of demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 4. Review and finalize protection requirements.
 5. Review procedures for noise control and dust control.
 6. Review items to be salvaged and returned to Owner.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For refrigerant recovery technician.

B. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

1.7 CLOSEOUT SUBMITTALS

A. Inventory: Submit a list of items that have been removed and salvaged.

1.8 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by EPA-approved certification program.

1.9 FIELD CONDITIONS

A. Buildings to be demolished will be vacated and their use discontinued before start of the Work.

B. Buildings immediately adjacent to demolition area will not be occupied.

C. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.

 1. Before building demolition, Owner will remove the following items:

 a. Wifi – Relay Antennae

D. Hazardous Materials: It is expected that hazardous materials will be encountered in the Work.

 1. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner.

 2. Contractor shall comply with the attached Asbestos Abatement Project Work Plan Project No. 5463.01 2020 as prepared by Farmer Environmental Group, LLC. on August 25th,
E. On-site storage or sale of removed items or materials is not permitted.

1.10 COORDINATION
A. Arrange demolition schedule so as not to interfere with operations of adjacent properties.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
B. Standards: Comply with ASSE A10.6 and NFPA 241.

2.2 SOIL MATERIALS
A. Satisfactory Soils: Comply with requirements in Division 31.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify that utilities have been disconnected and capped before starting demolition operations.
B. Review Project Record Documents of existing construction or other existing conditions provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in Project Record Documents.
C. Steel Tendons: Locate tensioned steel tendons and include recommendations for de-tensioning.
D. Verify that hazardous materials have been remediated before proceeding with building demolition operations.

3.2 PREPARATION
A. Refrigerant: Before starting demolition, remove refrigerant from mechanical equipment according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS
A. Existing Utilities to be Disconnected: Locate, identify, disconnect, and seal or cap off utilities serving buildings and structures to be demolished.
 1. Arrange to shut off utilities with utility companies.
2. Do not start demolition work until utility disconnecting and sealing have been completed and verified in writing.

3.4 PROTECTION

A. Existing Facilities: Protect adjacent walkways, loading docks, building entries, and other building facilities during demolition operations. Maintain exits from existing buildings.

B. Temporary Shoring: Provide and maintain interior and exterior shoring, bracing, or structural support to preserve stability and prevent unexpected movement or collapse of construction being demolished.

C. Existing Utilities to Remain: Maintain utility services to remain and protect from damage during demolition operations.

D. Temporary Protection: Erect temporary protection, such as walks, fences, railings, canopies, and covered passageways, where required by authorities having jurisdiction and as indicated. Comply with requirements in Section 015000 "Temporary Facilities and Controls."

1. Protect adjacent buildings and facilities from damage due to demolition activities.
2. Protect existing site improvements, appurtenances, and landscaping to remain.
3. Erect a plainly visible fence around drip line of individual trees or around perimeter drip line of groups of trees to remain.
4. Provide protection to ensure safe passage of people around building demolition area and to and from adjacent properties.

E. Remove temporary barriers and protections where hazards no longer exist. Where open excavations or other hazardous conditions remain, leave temporary barriers and protections in place.

3.5 DEMOLITION, GENERAL

A. General: Demolish indicated buildings and site improvements completely. Use methods required to complete the Work within limitations of governing regulations and as follows:

1. Do not use cutting torches until work area is cleared of flammable materials. Maintain portable fire-suppression devices during flame-cutting operations.
2. Maintain fire watch during and for at least 2 hours after flame-cutting operations.
3. Maintain adequate ventilation when using cutting torches.
4. Locate building demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

B. Site Access and Temporary Controls: Conduct building demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks, walkways, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed trafficways if required by authorities having jurisdiction.
2. Use water mist and other suitable methods to limit spread of dust and dirt. Comply with governing environmental-protection regulations. Do not use water when it may damage
adjacent construction or create hazardous or objectionable conditions, such as ice, flooding, and pollution.

C. Explosives: Use of explosives is not permitted.

3.6 DEMOLITION BY MECHANICAL MEANS

A. Proceed with demolition of structural framing members systematically, from higher to lower level. Complete building demolition operations above each floor or tier before disturbing supporting members on the next lower level.

B. Below-Grade Construction: Demolish foundation walls and other below-grade construction that are within footprint of new construction and extending 5 feet outside footprint indicated for new construction. Abandon below-grade construction outside this area.

1. Items under building or new construction footprint: Remove below-grade construction, including basements, foundation walls, and footings, completely, and piers to a level which does not interfere with preparation for or placement of new construction.

2. Items outside building or new construction footprint: Remove below-grade construction, including basements, foundation walls, and footings, to between 24 and 36 inches below final grade. (Piers per item 1 above)

C. Existing Utilities: Demolish and remove existing utilities and below-grade utility structures.

3.7 SITE RESTORATION

A. Site Grading: Uniformly rough grade area of demolished construction to a smooth surface, free from irregular surface changes. Provide a smooth transition between adjacent existing grades and new grades.

3.8 REPAIRS

A. Promptly repair damage to adjacent buildings caused by demolition operations.

3.9 DISPOSAL OF DEMOLISHED MATERIALS

A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste landfill acceptable to authorities having jurisdiction.

1. Do not allow demolished materials to accumulate on-site.

2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Do not burn demolished materials.
3.10 CLEANING

A. Clean adjacent areas and improvements of dust, dirt, and debris caused by building demolition operations. Return adjacent areas to condition existing before building demolition operations began.

1. Clean roadways of debris caused by debris transport.

END OF SECTION 024116
SECTION 03 30 00 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section specifies cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:

1. Footings.
2. Slabs-on-grade.
3. Concrete toppings.

B. WORK INCLUDED

1. Design, fabrication, erection, and stripping of formwork for cast-in-place concrete including shoring, reshoring, falsework, bracing, proprietary forming systems, prefabricated forms, void forms, permanent metal forms, bulkheads, keys, blockouts, sleeves, pockets, and accessories. Erection shall include installation in formwork of items furnished by other trades.
2. Furnish all labor and materials required to fabricate, deliver and install reinforcement and embedded metal assemblies for cast-in-place concrete, including steel bars, welded steel wire fabric, ties and supports.
3. Furnish all labor and materials required to perform the following:
 a. Cast-in-place concrete
 b. Concrete mix designs
 c. Grouting structural steel baseplates

C. Related Sections include the following:
 1. Division 32 Section “Concrete Paving” for concrete pavement and walks.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, Slag Cement, and silica fume; subject to compliance with requirements.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Design Mixtures: For each concrete mixture, submit proposed mix designs in accordance with ACI 318 requirements. Each proposed mix design shall be accompanied by a record of past performance.
 1. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 2. Indicate amounts of mixing water to be withheld for later addition at Project site.

C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
 1. Do not reproduce the structural drawings for use as shop drawings.
 2. Embedded metal assemblies: Submit shop drawings for fabrication and placement. Use standard AWS welding symbols.

D. Steel Reinforcement Submittals for Information: Mill test certificates of supplied concrete reinforcing, indicating physical and chemical analysis.

E. Formwork Shop Drawings: Prepared and sealed by a qualified professional engineer, licensed in the State where the project is located, detailing fabrication, assembly, and support of formwork.
 1. Shoring and Reshoring: Indicate proposed schedule and sequence of stripping formwork, shoring removal, and installing and removing reshoring.

F. Welding certificates.

G. Material Test Reports: For the following, from a qualified testing agency, indicating compliance with requirements:
 1. Aggregates.

H. Material Certificates: For each of the following, signed by manufacturers:
 1. Cementitious materials
 2. Admixtures
 3. Form materials and form-release agents
 4. Steel reinforcement and accessories
 5. Waterstops
 6. Curing compounds
 7. Floor and slab treatments
 8. Bonding agents
 9. Adhesives
 10. Vapor retarders
 11. Joint-filler strips
 12. Repair materials

I. Submit manufacturer's certification of maximum chloride ion content in admixtures.

J. Fly ash: Submit certification attesting to carbon content and compliance with ASTM C618.
K. Construction Joint Layout: Submit a diagram of proposed construction joint locations for horizontal framing that exceed the limits of a single placement as stated in the structural notes, other than those indicated on the Drawings.

L. Floor surface flatness and levelness measurements to determine compliance with specified tolerances.

M. Field quality-control test and inspection reports.

N. Minutes of preinstallation conference.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.

B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

C. Testing Agency Qualifications: An independent agency, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.

1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-01 or an equivalent certification program.

2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician - Grade I. Testing Agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician - Grade II.

D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from one source, and obtain admixtures through one source from a single manufacturer.

E. Welding: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code-Reinforcing Steel."

F. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:

1. ACI 301, "Specification for Structural Concrete,"

2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

G. Concrete Testing Service: Owner may engage a qualified independent testing agency to perform material evaluation tests.
H. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."

1. Before submitting design mixtures, review concrete design mixture and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete subcontractor.

2. Review special inspection and testing and inspecting agency procedures for field quality control, concrete finishes and finishing, cold- and hot-weather concreting procedures, curing procedures, construction contraction and isolation joints, and joint-filler strips, forms and form removal limitations, shoring and reshoring procedures, vapor-retarder installation, anchor rod and anchorage device installation tolerances, steel reinforcement installation, floor and slab flatness and levelness measurement, concrete repair procedures, and concrete protection.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.

B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

C. Store all proprietary materials in accordance with manufacturer’s recommendations.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:

 1. ACI 301.
 2. ACI 117.

2.2 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.

 1. Plywood, metal, or other approved panel materials.
2. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:

 a. High-density overlay, Class 1 or better.

3. Steel Forms

 B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

 C. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that will produce surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.

 E. Rustication Strips: Wood, metal, PVC, or rubber strips, kerfed for ease of form removal.

 F. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

 G. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.

 1. Furnish units that will leave no corrodible metal closer than 1 inch to the plane of exposed concrete surface.
 2. Furnish ties that, when removed, will leave holes no larger than 1 inch in diameter in concrete surface.
 3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

2.3 STEEL REINFORCEMENT

 A. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 60 percent.

 B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

 C. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.

 D. Deformed-Bar Anchor: ASTM A1064/ A1064M.
E. Plain-Steel Welded-Wire Reinforcement: ASTM A1064/A1064M, plain, fabricated from as-drawn steel wire into flat sheets.

2.4 REINFORCEMENT ACCESSORIES

A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60, plain-steel bars, cut bars true to length with ends square and free of burrs.

B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:

1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.
2. For slabs on grade and slabs on void forms, provide sand plates, horizontal runners, or precast concrete blocks on bottom where base material will not support chair legs or where vapor barrier has been specified.

2.5 MECHANICAL SPLICES

A. Provide mechanical splices designed to develop, in tension and compression, 125 percent of the minimum ASTM specified yield strength of the smaller bar being spliced. The following splicing systems are acceptable:

1. Erico "Cadweld T-Series"
2. Erico "Lenton"
3. Dayton Barsplice "Bar-Grip"
4. Dayton Barsplice "Grip-Twist"

2.6 DOWEL BAR ANCHORS

A. Provide dowel bar anchors and threaded dowels designed to develop, in tension and compression, 125 percent of the minimum ASTM specified yield strength of the dowel bars. Unless otherwise indicated, anchors shall be furnished with ACI standard 90 degree hooks. Dowels shall be furnished by the anchor supplier. The following dowel splicing systems are acceptable:

1. Richmond Screw Anchor "Dowel Bar Splicer"
2. Erico "Lenton Form Saver"
3. Dayton Barsplice "Grip-Twist"

2.7 EMBEDDED METAL ASSEMBLIES

A. Steel Shapes and Plates: ASTM A36

C. Reinforcing Bars to be Welded: ASTM A706.

D. Coatings
 1. Epoxy coating for metal assemblies shall be "Hi-Build Epoxoline," as manufactured by the Tnemec Company, Kansas City, Missouri, applied in accordance with manufacturer's recommendations.

2.8 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 1. Portland Cement: ASTM C 150, Type I/II, gray. Supplement with the following:
 a. Fly Ash: ASTM C 618, Class F or C.
 b. Slag Cement: ASTM C 989, Grade 100 or 120.

B. Normal-Weight Aggregates: ASTM C 33, Class 3M coarse aggregate or better, graded. Provide aggregates from a single source.
 1. Maximum Coarse-Aggregate Size: As indicated on drawings.
 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

2.9 ADMIXTURES

B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.10 WATERSTOPS

B. VAPOR RETARDERS

C. Plastic Vapor Retarder: ASTM E 1745, Class A.

1. Membrane shall have the following properties:
 a. Minimum 15 mils thickness.
 b. Permeance Rating: ASTM E96, 0.01 Perms [grains/(ft^2 * hr *- in Hg)] or lower as tested after mandatory conditioning (ASTM E 154 sections 8, 11, 12, 13)
 c. Installation shall be in accordance with ASTM E1643 and manufacturer’s instructions.

2. Products:
 a. Carlisle Coatings & Waterproofing, Inc.: Blackline 400.
 b. Epro; Ecoshield-E 15 mil.
 c. Inteplast Group; Barrier Bac VBC-350 Composite Vapor Retarder
 d. Reef Industries; Vaporguard.
 e. Stego Wrap 15 mil, by Stego.

3. Accessories
 a. Perimeter/seam sealing tape for use with membranes that are not self-adhering to the underside of concrete slabs on void forms:
 1) Crete Claw detail tape by Stego Industries, LLC, for adhering vapor retarder membrane to the underside of concrete surface at slabs on carton void forms, 3-inch and 6-inch widths as noted in Part 3.
 2) StegoTack double-sided adhesive tape by Stego Industries, LLC, for adhering membrane to concrete at gradebeams.
 b. Manufacturer’s recommended standard adhesive or pressure sensitive tape for general use.

2.11 CURING MATERIALS

A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.

1. Products:
 a. Axim Concrete Technologies; CATEXOL Cimfilm.
 b. BASF Construction Chemicals – Building Systems; Confilm.
 c. ChemMasters; Spray-Film.
 d. Conspec by Dayton Superior; Aquafilm.
 e. Dayton Superior Corporation; Sure Film (J-74).
 f. Edoce by Dayton Superior; BurkeFilm.
 g. Euclid Chemical Company (The), an RPM company; Eucobar.
h. Kaufman Products, Inc.; Vapor Aid.
i. Lambert Corporation; LAMBCO Skin.
j. L&M Construction Chemicals, Inc.; E-Con.
k. Meadows, W. R., Inc.; EVAPRE.
l. Metalcrete Industries; Waterhold.
m. Nox-Crete Products Group; Monofilm.
n. Sika Corporation, Inc.; SikaFilm.
o. SpecChem, LLC; Spec Film.
p. Symons by Dayton Superior; Finishing Aid.
q. TK Products, Division of Sierra Corporation; TK-2120 TRI-FILM.
r. Unitex; Pro-Film.
s. Vexcon Chemicals, Inc.; Certi-Vex Envio Set.

B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.

C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

D. Water: Potable.

E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

1. Products:

a. Anti-Hydro International, Inc.; AH Curing Compound #2 DR WB.
b. BASF Construction Chemicals – Building Systems; Kure 200.
c. ChemMasters; Safe-Cure Clear.
d. Conspec by Dayton Superior; W.B. Resin Cure.
e. Dayton Superior Corporation; Day Chem Rez Cure (J-11-W).
f. Edoco by Dayton Superior; Res X Cure WB.
g. Euclid Chemical Company (The), an RPM company; Kurez W VOX; TAMMSCURE WB 30C.
i. Lambert Corporation; Aqua Kure-Clear.
j. L&M Construction Chemicals, Inc.; L&M Cure R.
l. Nox-Crete Products Group; Resin Cure E.
m. Right Pointe; Clear Water Resin.
n. SpecChem, LLC; Spec Rez Clear.
o. Symons by Dayton Superior; Resi-Chem Clear.
p. TK Products, Division of Sierra Corporation; TK-2519 DC WB.
q. Vexcon Chemicals, Inc.; Certi-Vex Envio cure 100.

F. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.

1. Products:
a. Anti-Hydro International, Inc.; AH Clear Cure WB.
b. BASF Construction Chemicals – Building Systems; Kure-N-Seal WB.
c. ChemMasters; Safe-Cure & Seal 20.
d. Conspec by Dayton Superior; Cure and Seal WB.
e. Cresset Chemical Company; Crete-Trete 309-VOE Cure & Seal.
f. Dayton Superior Corporation; Safe Cure and Seal (J-18).
g. Edoco by Dayton Superior; Spartan Cote WB II.
h. Euclid Chemical Company (The), an RPM company; Aqua Cure VOX; Clearseal WB 150.
j. Lambert Corporation; Glazecote Sealer-20.
k. L&M Construction Chemicals, Inc.; Dress & Seal WB.
m. Metalcrete Industries; Metecure.
n. Nox-Crete Products Group; Cure & Seal 150E.
o. Symons by Dayton Superior; Cure & Seal 18 Percent E.
p. TK Products, Division of Sierra Corporation; TK-2519 WB.
q. Vexcon Chemicals, Inc.; Starseal 309.

G. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B. 18 to 25 percent solids, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.

1. Products:
 a. BASF Construction Chemicals – Building Systems; Kure-N-Seal W.
 b. ChemMasters; Safe-Cure Clear.
 c. Conspec by Dayton Superior; High Seal.
 d. Dayton Superior Corporation; Safe Cure and Seal (J-19).
 e. Edoco by Dayton Superior; Spartan Cote WB II 20 Percent.
 f. Euclid Chemical Company (The), an RPM Company; Diamond Clear VOX; Clearseal WB STD.
 g. Kaufman Products, Inc.; SureCure Emulsion.
 h. Lambert Corporation; Glazecote Sealer-20.
 i. L&M Construction Chemicals, Inc.; Dress & Seal WB.
 k. Metalcrete Industries; Metecure 0800.
 l. Nox-Crete Products Group; Cure & Seal 200E.
 m. Symons by Dayton Superior; Cure & Seal 18 Percent E.
 n. Vexcon Chemicals, Inc.; Starseal 0800.

2.12 RELATED MATERIALS

B. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
C. Sleeves and Blockouts: Formed with galvanized metal, galvanized pipe, polyvinyl chloride pipe, fiber tubes, or wood.

D. Nails, Spikes, Lag Bolts, Through Bolts, Anchorages: Sized as required; of strength and character to maintain formwork in place while placing concrete.

2.13 REPAIR MATERIALS

 1. Compressive Strength: 1200 psi minimum at 1 day; 6000 psi minimum at 28 days when tested according to ASTM C 109.
 2. Bond Strength: 1800 psi minimum at 28 days when tested according to ASTM C 882 (Modified).
 3. Product / Manufacturer: SikaTop 122 Plus or SikaTop 123 Plus, Sika Corporation, or approved equal.

B. Repair Mortar – Form and Pour or Pump: Pre-packaged, cement-based, single-component, polymer-modified, silica-fume-enhanced, cementitious mortar.
 1. Compressive Strength: 3000 psi minimum at 1 day; 6500 psi at 28 days when tested according to ASTM C 109.
 2. Bond Strength: 2200 psi at 28 days when tested according to ASTM C 882 (modified).
 3. Product / Manufacturer: Sika MonoTop 611, Sika Corporation, or approved equal.

2.14 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
 2. Required average strength above specified strength:
 a. Based on a record of past performance: Determination of required average strength above specified strength shall be based on the standard deviation record of the results of at least 30 consecutive strength tests in accordance with ACI 318, Chapter 5.3 by the larger amount defined by formulas 5-1 and 5-2.
 b. Based on laboratory trial mixtures: Proportions shall be selected on the basis of laboratory trial batches prepared in accordance with ACI 318, Chapter 5.3.3.2 to produce an average strength greater than the specified strength f'c by the amount defined in table 5.3.2.2.

1) Proportions of ingredients for concrete mixes shall be determined by an independent testing laboratory or qualified concrete supplier.
2) For each proposed mixture, at least three compressive test cylinders shall be made and tested for strength at the specified age. Additional cylinders may be made for testing for information at earlier ages.

B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 1. Fly Ash: 20 percent.
 4. Combined Fly Ash or Pozzolan and Slag Cement: 50 percent portland cement minimum, with fly ash or pozzolan not exceeding 25 percent.

C. Limit water-soluble, chloride-ion content in hardened concrete to 0.30 percent by weight of cement.

D. Admixtures: Use admixtures according to manufacturer's written instructions.
 1. Do not use admixtures which have not been incorporated and tested in accepted mixes.
 2. Use water-reducing admixture in concrete, as required, for placement and workability.
 3. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 4. Use water-reducing admixture in pumped concrete, and concrete with a water-cementitious materials ratio below 0.50.

2.15 CONCRETE MIXTURES FOR BUILDING ELEMENTS

A. Proportion normal-weight concrete mixture as indicated on drawings.

2.16 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.17 FABRICATION OF EMBEDDED METAL ASSEMBLIES

A. Fabricate metal assemblies in the shop. Holes shall be made by drilling or punching. Holes shall not be made by or enlarged by burning. Welding shall be in accordance with AWS D1.1.

B. Welding of deformed bar anchors and headed stud anchors shall be done by full fusion process equal to that of TRW Nelson Stud Welding Division. A minimum of two headed studs shall be tested at the start of each production period for proper quality control. The studs shall be capable of being bent 45 degrees without failure.

C. Welding of reinforcement shall be done in accordance with AWS D1.4, using the recommended preheat temperature and electrode for the type of reinforcement being welded. Bars larger than
no. 9 shall not be welded. Welding shall be subject to the observance and testing of the Testing Laboratory.

D. Metal assemblies exposed to earth, weather or moisture shall be hot dip galvanized. All other metal assemblies shall be either hot dip galvanized or painted with an epoxy paint. Repair galvanizing after welding with a Cold Galvanizing compound installed in accordance with the manufacturer's instructions. Repair painted assemblies after welding with same type of paint.

2.18 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94 and furnish batch ticket information.

1. When air temperature is between 85 and 95 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 95 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.

1. Vertical alignment:
 a. Lines, surfaces and arises less than 100 feet in height - 1 inch.
 b. Outside corner of exposed corner columns and control joints in concrete exposed to view less than 100 feet in height - 1/2 inch.

2. Lateral alignment:
 a. Members - 1 inch.
 b. Centerline of openings 12 inches or smaller and edge location of larger openings in slabs - 1/2 inch.

3. Level alignment:
 a. Elevation of slabs-on-grade - 3/4 inch.
 d. Lintels, sills, parapets, horizontal grooves, and other lines exposed to view - 1/2 inch.
 a. 12 inch dimension or less - plus 3/8 inch to minus 1/4 inch.
 b. Greater than 12 inch to 3 foot dimension - plus 1/2 inch to minus 3/8 inch.
 c. Greater than 3 foot dimension - plus 1 inch to minus 3/4 inch.

5. Relative alignment:
 a. Stairs:
 1) Difference in height between adjacent risers - 1/8 inch.
 2) Difference in width between adjacent treads - 1/4 inch.
 3) Maximum difference in height between risers in a flight of stairs - 3/8 inch.
 4) Maximum difference in width between treads in a flight of stairs - 3/8 inch.
 b. Grooves:
 1) Specified width 2 inches or less - 1/8 inch.
 2) Specified width between 2 inches and 12 inches - 1/4 inch.
 c. Vertical alignment of outside corner of exposed corner columns and control joint grooves in concrete exposed to view - 1/4 inch in 10 feet.
 d. All other conditions - 3/8 inch in 10 feet.

C. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 2. Class B, 1/4 inch for rough-formed finished surfaces.

D. Construct forms tight enough to prevent loss of concrete mortar.

E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 1. Install keyways, reglets, recesses, and the like, for easy removal.
 2. Do not use rust-stained steel form-facing material.

F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

G. Provide elevation or camber in formwork as required for anticipated formwork deflections due to weight and pressures of concrete and construction loads.

H. Foundation Elements: The sides of all below grade portions of beams, pier caps, walls, and columns shall be formed straight and to the lines and grades specified. Foundation elements shall not be earth formed unless specifically indicated on the Drawings.
I. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

J. Chamfer exterior corners and edges of permanently exposed concrete.

K. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

L. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

M. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

N. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement, anchoring devices, and embedded items.

1. Do not apply form release agent where concrete surfaces are scheduled to receive subsequent finishes which may be affected by agent. Soak contact surfaces of untreated forms with clean water. Keep surfaces wet prior to placing concrete.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."

 a. Spacing within a bolt group: 1/8"
 b. Location of bolt group (center): 1/2"
 c. Rotation of bolt group: 5 degrees
 d. Angle off vertical: 5 degrees
 e. Bolt projection: ± 3/8"

3.3 REMOVING AND REUSING FORMS

A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F
for 24 hours after placing concrete, if concrete is hard enough to not be damaged by form-removal operations and curing and protection operations are maintained.

1. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.

2. Formwork supporting conventionally reinforced concrete shall not be removed until concrete has attained 85 percent of its specified 28 day compressive strength as established by tests of field cured cylinders. In the absence of cylinder tests, supporting formwork shall remain in place until the concrete has cured at a temperature of at least 50 degrees Fahrenheit (10 degrees Celsius) for the minimum cumulative time periods given in ACI 347, Section 3.7.2.3. When the surrounding air temperature is below 50 degrees Fahrenheit (10 degrees Celsius), that time period shall be added to the minimum listed time period. Formwork for two-way conventionally reinforced slabs shall remain in place for at least the minimum cumulative time periods specified for one-way slabs of the same maximum span.

3. Two-way conventionally reinforced slabs shall be immediately reshored after formwork removal. Reshores shall remain until the concrete has attained the specified 28 day compressive strength.

4. Minimum cumulative curing times may be reduced by the use of high-early strength cement or forming systems which allow form removal without disturbing shores, but only after the Contractor has demonstrated to the satisfaction of the Architect that the early removal of forms will not cause excessive sag, distortion or damage to the concrete elements.

5. Forms for post-tensioned concrete shall not be removed until tensioning operations have been completed.

6. Wood forms shall be completely removed. Provide temporary openings if required.

7. Provide adequate methods of curing and thermal protection of exposed concrete if forms are removed prior to completion of specified curing time.

8. Areas required to support construction loads in excess of 20 psf shall be reshored to properly distribute construction loading. Construction loads up to the rated live load capacity may be placed on unshored construction provided the concrete has attained the specified 28 day compressive strength.

9. Obtaining concrete compressive strength tests for the purposes of form removal shall be the responsibility of the Contractor.

10. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.

B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.

C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 SHORES AND RESHORES

A. The Contractor shall be solely responsible for proper shoring and reshoring.
B. Comply with ACI 318 and ACI 301 for design, installation, and removal of shoring and reshoring.

1. Do not remove shoring or reshoring until measurement of slab tolerances is complete.

C. In multistory construction, extend shoring or reshoring over a sufficient number of stories to distribute loads in such a manner that no floor or member will be excessively loaded or will induce tensile stress in concrete members without sufficient steel reinforcement.

1. All structural framing required to support one or more subsequent levels of construction shall be reshored. Reshores shall be located in the same position on each floor. No construction loads shall be placed on the new construction until all supporting reshores have been installed.
2. Extend shores or reshored from ground to top level in structure three stories or less in height, unless noted otherwise.
3. In structures over three stories in height, extend reshores at least three levels under the level being placed. Extend shores beyond the minimum number of levels if required to ensure proper distribution of loads throughout the structure.
4. In crawl spaces or basements, shores or reshores shall extend to mud pads seated firmly on the soil or to on-grade construction.
5. Bottom tier of reshores shall remain in place until the supported concrete (at the uppermost level) has attained at least 85 percent of the specified 28 day compressive strength and construction loads in excess of 20 psf have been removed.
6. Conventionally reinforced uppermost floors do not need to be reshored provided forms supporting concrete are not removed until concrete has attained 85 percent of its specified 28 day compressive strength as established by tests of field cured cylinders.
7. All levels of reshores may be removed after formwork for the uppermost floor has been removed in accordance with these specifications.

D. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

3.5 VAPOR RETARDERS

A. Plastic Vapor Retarders: Place, protect, and repair vapor retarders according to ASTM E 1643 and manufacturer's written instructions.

B. Lap joints 6 inches and seal with tape as noted below.

1. Vapor retarder membrane seal at slabs on void forms for use with membranes that are not self-adhering to the underside of concrete slabs: Seal vapor retarder membrane to underside of slab using perimeter/seam seal tape applied continuously to perimeter of vapor retarder membrane at grade beams (3in. tape) and at the seams at interior conditions (6in. tape).
 a. Apply double-sided adhesive tape top surface of grade beam and adhere membrane to tape. Refer to the drawings for detail.
 b. Remove any dirt or debris from membrane prior to application of sealing tape.
2. General sealing and at slabs on grade: Use manufacturer’s standard adhesive or pressure sensitive tape for sealing membrane at seams, pipe penetrations, tears, etc.
3.6 STEEL REINFORCEMENT

A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.

C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 1. Weld reinforcing bars according to AWS D1.4, where indicated. Only steel conforming to ASTM A706 may be welded.

D. Installation tolerances:
 1. Top and bottom bars in slabs, girders, beams and joists:
 a. Members 8" deep or less: ±3/8"
 b. Members more than 8" deep: ±1/2"
 2. Concrete Cover to Formed or Finished Surfaces: ±3/8" for members 8" deep or less; ±1/2" for members over 8" deep, except that tolerance for cover shall not exceed 1/3 of the specified cover.

E. Concrete Cover: Refer to the Structural Notes.

F. Splices: Provide standard reinforcement splices by lapping and tying ends. Comply with ACI 318 for minimum lap of spliced bars where not specified on the documents.

G. Mechanical Splices: Use for splicing of bars larger than no. 11 or where no. 11 bars are spliced to larger size bars and where indicated on the drawings. Comply with manufacturer's instructions for preparation of bars and installation procedures.

H. Field Welding of Embedded Metal Assemblies: All paint and galvanizing shall be removed in areas to receive field welds. All areas where paint or galvanizing has been removed shall be field repaired with the specified paint or cold galvanizing compound, respectively.

I. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

J. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.
3.7 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.

1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.
3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
5. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
6. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
7. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated.

D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface, unless otherwise indicated.
2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface where joint sealants, specified in Division 7 Section "Joint Sealants," are indicated.
3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.

E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.8 WATERSTOPS

A. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field fabricate joints in waterstops according to manufacturer's written instructions.
3.9 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.

B. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301, and only if specifically noted as withheld on the batch ticket.
 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
 2. Water content shall not exceed the maximum specified water/cement ratio for the mix.

C. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
 4. Do not permit concrete to drop freely any distance greater than 20'-0" for concrete containing a high range water reducing admixture (superplasticizer) or 5'-0" for other concrete. Provide chute or tremie to place concrete where longer drops are necessary. Do not place concrete into excavations with standing water. If place of deposit cannot be pumped dry, pour concrete through a tremie with its outlet near the bottom of the place of deposit.
 5. Pump priming grout shall be discarded and not used in the structure.

D. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 4. Slope surfaces uniformly to drains where required.
 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

E. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
1. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.

2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.

3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

F. Hot-Weather Placement: Comply with ACI 305.1 and as follows:

1. Maintain concrete temperature below 95 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.

2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

3.10 FINISHING FORMED SURFACES

A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces not exposed to public view.

B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces exposed to public view.

C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

3.11 MISCELLANEOUS CONCRETE ITEMS

A. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
C. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates from manufacturer furnishing machines and equipment.

1. Housekeeping pads: Concrete fill shall be normal weight concrete (3000 psi), reinforced with 4x4-W2.1xW2.1 welded wire mesh set at middepth of pad. Trowel concrete to a dense, smooth finish. Set anchor bolts for securing mechanical or electrical equipment during pouring of concrete fill.

D. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Cast-in inserts and accessories as shown on Drawings. Screed, tamp, and trowel-finish concrete surfaces.

1. Mix one part Portland Cement and two parts crushed stone or gravel passing 3/8" sieve and retained on a 1/8" sieve, measured by volume with only sufficient water to produce a dry consistency for proper placing and finishing.
2. Placing: Place fill and reinforcement in all steel pan treads and landings. Reinforcement shall be 4x4-W2.1xW2.1 welded wire mesh extending over the area of each tread and landings. Support reinforcement 3/4" above bottom of steel pans. After sufficient hardening of the concrete fill, steel trowel the exposed surface to a smooth finish.
3. Abrasive aggregate: Sprinkle abrasive aggregate into the troweled concrete fill in two shakes at the rate of 1/4 pound per square foot and trowel lightly into the surface.

E. Protective slabs ("Mud slabs"): Concrete fill shall be normal weight concrete (2500 psi minimum) with a minimum thickness of 3 1/2". Reinforce protective slabs with 6x6-W2.9xW2.9 welded wire mesh reinforcing. Finish slab to a wood float finish.

3.12 INSTALLATION OF NON-SHRINK GROUT UNDER BASEPLATES

A. Grout under all bearing and baseplates. Comply with manufacturer's instructions. Do not dry pack.

B. Mixing: Use a mechanical mixer. Add only enough water to make grout placeable. Do not mix more grout than can be used in 20 minutes. Under no circumstances shall grout be retempered.

3.13 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 305.1 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms.
If removing forms before end of curing period, continue curing for the remainder of the curing period.

D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.

E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recite areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 a. After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer.

4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recite areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.14 CONCRETE SURFACE REPAIRS

A. Surface Defects in Concrete: Repair and patch defective areas when approved by Engineer. Remove and replace concrete that cannot be repaired and patched to Owner's approval.
B. Contractor shall submit a detailed, descriptive procedure listing proposed pre-packaged repair materials and methods for the repair of surface defects prior to the start of repair work.

C. Patching Mortar: Mix, place and finish pre-packaged repair mortar in accordance with manufacturer's instructions.

D. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, minor honeycombs and rock pockets with no exposed reinforcement, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.

1. Immediately after form removal, cut out minor honeycombs, rock pockets, and voids more than 1/2 inch in any dimension in solid concrete, but not less than 1 inch in depth. Make edges of cuts perpendicular to concrete surface, 1/4 inch deep minimum. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.

2. Repair defects on surfaces exposed to view using pre-packaged repair mortar so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

E. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.

1. Repair finished surfaces containing defects. Surface defects include minor spalls, pop outs, honeycombs and rock pockets with no exposed reinforcement, crazing and cracks in excess of 0.01 inch wide that do not penetrate to reinforcement, and other objectionable conditions.

2. After concrete has cured at least 14 days, correct high areas by grinding.

3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.

4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.

5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with patching mortar. Remove defective areas with clean, square cuts, ¼” deep minimum. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Place, compact, and finish patching mortar to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching
mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

8. Unapproved and defective repairs shall be removed and replaced in accordance with requirements provided by the Engineer at no additional cost to the Owner.

3.15 STRUCTURAL REPAIRS

A. Structurally Defective Concrete: Structural defects include spalls, honeycombs or rock pockets with exposed reinforcement, hollow-sounding concrete, cracks that penetrate to the reinforcement or completely through concrete elements, inadequate cover over reinforcement, and other conditions that affect the structural performance or durability of the concrete as determined by the Engineer.

B. Repair structural defects in concrete in accordance with plans, specifications, details, etc. provided by the Engineer.

1. The cost of the additional services provided by the Engineer to prepare the repair documents, and to oversee the repair work shall be borne by the Contractor.

C. Unapproved and defective repairs shall be removed and replaced in accordance with requirements provided by the Engineer at no additional cost to the Owner.

3.16 CLEANUP

A. Imperfect or damaged work or any material damaged or determined to be defective before final completion and acceptance of the entire job shall be satisfactorily replaced at the Contractor's expense, and in conformity with all of the requirements of the Drawings and Specifications. Removal and replacement of concrete work shall be done in such manner as not to impair the appearance or strength of the structure in any way.

B. Cleaning: Upon completion of the work all forms, equipment, protective coverings and any rubbish resulting therefrom shall be removed from the site. After sweeping floors, wash floors with clean water. Finished concrete surfaces shall be left in a clean condition, satisfactory to the Owner.

3.17 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner may engage a special inspector and/or a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Inspections may include:

1. Steel reinforcement placement.
2. Steel reinforcement welding.
3. Headed bolts and studs.
4. Verification of use of required design mixture.
5. Concrete placement, including conveying and depositing.
6. Curing procedures and maintenance of curing temperature.
7. Verification of concrete strength before removal of shores and forms from beams and slabs.

C. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:

1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

3. Air Content: ASTM C 231, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.

5. Compression Test Specimens: ASTM C 31/C 31M.
 a. Cast and laboratory cure four cylinders for each composite sample.
 1) Do not transport field-cast cylinders until they have cured for a minimum of 24 hours.

 a. Test one cylinder at 7 days
 b. Test two cylinders at 28 days
 c. Test one cylinder at 56 days
 d. If 4” by 8” cylinders are used, provide 1 additional cylinder at each stage

7. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

8. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

9. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

10. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency
may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.

a. When the strength level of the concrete for any portion of the structure, as indicated by cylinder tests, falls below the specified requirements, the Contractor shall provide improved curing conditions and/or adjustments to the mix design as required to obtain the required strength. If the average strength of the laboratory control cylinders falls so low as to be deemed unacceptable, the Contractor shall follow the core test procedure set forth in ACI 301, Section 1.6. Locations of core tests shall be approved by the Architect. Core sampling and testing shall be at Contractors expense.

b. If the results of the core tests indicate that the strength of the structure is inadequate, any replacement, load testing, or strengthening as may be ordered by the Architect shall be provided by the Contractor without cost to the Owner.

11. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

12. Correct deficiencies in the Work that test reports and inspections indicate does not comply with the Contract Documents.
SECTION 033501 - CONCRETE FINISHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Work specified in this section includes all labor, materials, equipment and services necessary to complete a custom concrete polishing system including curing compounds, appropriate surface preparation, concrete densifiers and stain-resistant treatments.

1. For concrete interior smooth locations (Broom finished areas and finished covered areas not included in this specification.)

B. Related Requirements:
 1. Division 3 Section “Cast-In-Place Concrete” for curing compounds.
 2. Division 3 Section “Joint Sealers” Installation of caulking

1.3 SUBMITTALS

A. Product Data

1. Submit special concrete finishes manufacturer’s specifications, test data and other data required for each type of manufactured material and product indicated.

2. Submit special concrete finishes technical bulletins listing manufacturer’s name, product name and descriptive data, curing time and application requirements.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: The contractor for this work shall be a licensed Contractor and Certified Applicator trained and equipped by the Manufacturer.

1. Provide letter of certification from manufacturer stating that installer is a certified applicator of special concrete finishes and is familiar with proper procedures/installation requirements of the manufacturer.

2. Use an authorized Licensed Contractor and adequate number of skilled workmen who are thoroughly trained and experienced in the necessary craft.

3. Applicator shall be familiar with the specified requirements and the methods needed for proper performance of work of this section.

4. Applicator shall be familiar with the previously approved mock-ups that demonstrated standard of workmanship.

B. Mockups: Build mockups to set quality standards for materials and execution.
1. Apply each type finish to mock-ups to demonstrate typical joints, depth of grind, color variation (if any) and standard of workmanship.
2. Mock-up shall include entire system, including specified concrete mix, depth of grind, hardening chemicals and surface treatments.
3. Notify Architect or Owner Representative seven days in advance of dates and times when mock-ups will be constructed.
4. Obtain from the Architect approval of mock-ups before starting construction.
5. If the Architect determines that the mock-ups do not meet requirements, General Contractor will demolish and remove them from the site and cast others until mock-ups are approved. Mock-up shall not be a part of the finished product of the building slab.
6. Maintain mock-ups during construction in an undisturbed condition as a standard for judging the completed work.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials in original packages and containers, with seals unbroken, bearing manufacturer labels indicating brand name and directions for storage, mixing with other components and application.
B. Store materials to comply with manufacturer’s written instructions to prevent deterioration from moisture or other detrimental effects.
C. Dispense special concrete finish material from factory numbered and sealed containers. Maintain record of container numbers.

1.6 FIELD CONDITIONS
A. Environmental Limitations:
 1. Comply with manufacturer’s written instructions for substrate temperature and moisture content, ambient temperature and humidity, ventilation and other conditions affecting installation performance.
 2. Concrete must be cured a minimum of 28 days or as directed by the manufacturer before application of custom polishing can begin.
 3. Close areas to traffic during and after floor application for time period recommended in writing by licensed installer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide Concrete Sealer System by Bomanite or comparable product by an approved equal manufacturer.

2.2 MATERIALS
A. Bomanite Clear Cure: A water based acrylic sealer containing <250 g/l VOC designed to bond to fresh concrete and meet ASTM C-309 membrane curing standards while being compatible with the Bomanite Custom Polishing processes.

B. Patching materials: Bomanite GFRC Facing Mix. Trowel or spray applied mortar based on Type II Portland cement blended with Calcium Aluminate cement modified with Styrene Butadiene polymer designed to bond to prepared concrete and cure rapidly in order to aid grinding production.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrate, with installer present, for conditions affecting performance of finish. Rectify conditions detrimental to timely and proper work. Do not proceed until unsatisfactory conditions are corrected.

B. Verify that base slab meets finish and surface profile requirements in Division 3 Section "Cast-In-Place Concrete," and “Project Conditions” above.

C. Prior to application, verify that floor surfaces are free of construction damage and contaminants.

D. Repair defective concrete due to improper installation. Removal and replacement of concrete that cannot be repaired and patched to Architect’s approval is the Concrete Contractor’s responsibility. The determination of whether the concrete can be repaired or must be removed and replaced is the General Contractor’s to make with the knowledge that adequate cure time of replaced sections must be allowed prior to commencing the grinding, staining and polishing process.

3.2 INSTALLATION

A. Construction Process:

1. Apply sealer in accordance with manufacturer’s application procedures.
 a. Application is to take place and be completed prior to racking and other in-store furniture and cabinetry installation, thus providing a complete, un-inhibited concrete slab for application.
 b. Applicable procedures must be followed as recommended by the product manufacturer and as required to match approved test sample and achieve required properties.

3.3 PROTECTION

A. General: Protect finished work from traffic until substantial completion in accordance with manufacturer’s recommendations.
B. Provide coverage and protection before, after, and during final finishing. Sealed Concrete, gauges, dents, breaks, exposed concrete surfaces subject to replacement.

END OF SECTION 033500
SECTION 042200 - CONCRETE UNIT MASONRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Concrete masonry units.
 2. Decorative concrete masonry units.
 3. Pre-faced concrete masonry units.
 4. Mortar and grout.
 5. Steel reinforcing bars.
 7. Embedded flashing.
 8. Miscellaneous masonry accessories.

B. Products Installed but not Furnished under This Section:

C. Related Requirements:
 1. Section 031000 "Cast-in Place Concrete" for installing dovetail slots for masonry anchors.
 2. Section 051200 "Structural Steel Framing" for installing anchor sections of adjustable masonry anchors for connecting to structural steel frame.
 3. Section 071900 "Water Repellents" for water repellents applied to unit masonry assemblies.
 4. Section 076200 "Sheet Metal Flashing and Trim" for sheet metal flashing and for furnishing manufactured reglets installed in masonry joints.

1.3 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For the following:
 1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
 2. Reinforcing Steel: Detail bar size, bending, lap lengths, lintels, bond beams, and placement of unit masonry reinforcing bars. Comply with ACI 315. Submit wall elevations of all shear and load bearing CMU reinforced walls. Indicate all wall reinforcement (vertical and horizontal), laps, placement, etc. on the submitted wall elevations for review.
 3. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.

C. Samples for Initial Selection:
 1. Colored mortar.

D. Samples for Verification: For each type and color of the following:
 1. Exposed CMUs.
 2. Pigmented mortar. Make Samples using same sand and mortar ingredients to be used on Project.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Material Certificates: For each type and size of the following:
 1. Masonry units.
 a. Include data on material properties material test reports substantiating compliance with requirements.
 b. For masonry units used in structural masonry, include data and calculations establishing average net-area compressive strength of units.
 2. Integral water repellant used in CMUs.
 3. Cementitious materials. Include name of manufacturer, brand name, and type.
 5. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
 6. Grout mixes. Include description of type and proportions of ingredients.
 7. Reinforcing bars.
 8. Joint reinforcement.
 9. Anchors, ties, and metal accessories.
C. Mortar Mix Designs: For each type of mortar. Include description of type and proportions of ingredients.
 1. Mix designs indicating type and proportions of ingredients in compliance with the proportion specifications of ASTM C270.
 2. Mix designs and mortar tests performed in accordance with the property specification of ASTM C270.

D. Grout Mix Designs: For each type of grout. Include description of type and proportions of ingredients.
 1. Mix designs indicating type and proportions of ingredients in compliance with the proportion specifications of ASTM C476.
 2. Mix designs and grout strength test performed in accordance with ASTM C476.
 3. Compressive strength tests performed in accordance with ASTM C1019 and slump flow and Visual Stability Index (VSI) as determined by ASTM C1611.

E. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to TMS 602/ACI 530.1/ASCE 6.

F. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications:
 1. Sample and test in accordance with the special inspection tables located on the structural drawings.
 2. Unless otherwise required, report test results to the Architect/Engineer, Inspection Agency, and the Contractor promptly after they are performed. Include in the test reports a summary of conditions under which test specimens were stored prior to testing and state what portion of the construction is represented by each test. Unless otherwise required, the Owner will retain the Testing Agency.
 3. Testing Agency Qualifications: Qualified according to ASTM C1093 for testing indicated.

B. Inspection Agency Qualifications:
 1. Inspect and evaluate in accordance with the special inspection tables located on the structural drawings.
 2. Unless otherwise required, report inspection results to the Architect/Engineer, and the Contractor promptly after they are performed. Include in the inspection reports a summary of conditions under which the inspections were made and state what portion of the construction is represented by each inspection.
 3. Furnish inspection reports to the Architect/Engineer and Contractor.
4. Unless otherwise required, the Owner will retain the Inspection Agency.

C. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.

1. Build mockup of typical wall area as shown on Drawings.

2. Protect accepted mockups from the elements with weather-resistant membrane.

3. Approval of mockups is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; and aesthetic qualities of workmanship.
 a. Approval of mockups is also for other material and construction qualities specifically approved by Architect in writing.
 b. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.

C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.

D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.

E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

F. Do not use damaged masonry units, damaged components or structure, or damaged packaged material.

G. Protect cementitious materials for mortar and grout from precipitation and groundwater.

H. Do not use masonry materials that are contaminated.

I. Store different aggregates separately.
J. Protect reinforcement, ties, and metal accessories from permanent distortions and store them off the ground.

1.8 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.

B. Extend cover a minimum of 24 inches down both sides of walls, and hold cover securely in place. Do not apply construction loads that exceed the safe superimposed load capacity of the masonry and shores, if used.

C. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

D. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.

 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 2. Protect sills, ledges, and projections from mortar droppings.
 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

E. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.
B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 PERFORMANCE REQUIREMENTS

A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days.
 1. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to TMS 602/ACI 530.1/ASCE 6.
 2. Determine net-area compressive strength of masonry by testing masonry prisms according to ASTM C1314.

2.3 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6 except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work.

C. See BIA Technical Notes 16B and NCMA TEK 7-3 for information on determining fire-resistance ratings of masonry walls.

D. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.
 1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.4 CONCRETE MASONRY UNITS

A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 2. Provide square-edged units for outside corners unless otherwise indicated.

B. CMUs: ASTM C90.
 1. Unit Compressive Strength: As required to achieve the indicated strength on the structural drawings.
 2. Density Classification: Lightweight.
3. Size (Width): (4”x8”x16”), (8”x8”x16”) Manufactured to dimensions 3/8 inch (10 mm) less-than-nominal dimensions.

4. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

C. Decorative CMUs: ASTM C90.
 1. Basis of Design: Best Block Construction Materials
 2. Unit Compressive Strength: As required to achieve the indicated compressive strength on the structural drawings.
 4. Size (Width): Manufactured to dimensions 3/8 inch (10 mm) less-than-nominal dimensions, as shown on drawings.
 5. Pattern and Texture as scheduled on the Drawings to include:
 a. Standard pattern, ground-face finish.
 b. Standard pattern, split-face finish.
 c. Standard pattern, polished finish.
 d. Combination, polished finish/split-face finish

2.5 MASONRY LINTELS

A. General: Provide one of the following as indicated by the drawings:

B. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.6 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

 1. Alkali content shall not be more than 0.1 percent when tested according to ASTM C114.

B. Hydrated Lime: ASTM C207, Type S.

C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

D. Masonry Cement: ASTM C91 is NOT allowed.

E. Mortar Cement: ASTM C1329/C1329M.
F. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C979/C979M. Use only pigments with a record of satisfactory performance in masonry mortar.

G. Colored Cement Products: Packaged blend made from portland cement and hydrated lime and mortar pigments, all complying with specified requirements, and containing no other ingredients.
 1. Formulate blend as required to produce color indicated or, if not indicated, as selected from manufacturer's standard colors.
 2. Pigments shall not exceed 10 percent of portland cement by weight.

H. Aggregate for Mortar: ASTM C144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4 inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18-mm) sieve.
 3. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

I. Aggregate for Grout: ASTM C404.

J. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C494/C494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Euclid Chemical Company (The); Accelguard 80.
 c. Sonneborn Products, BASF Aktiengesellschaft; Trimix-NCA.

K. Water: Potable.

2.7 REINFORCEMENT

A. Provide Reinforcing as indicated on Drawings.

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars into center of cells. Units are formed from 0.148-inch steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated and locations shown on the structural drawings.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hohman & Banard, Dur-O-Wal Division; D/A 810, D/A 812 or D/A 817.
C. Masonry-Joint Reinforcement, General: ASTM A951/A951M.
 1. Interior Walls: Hot-dip galvanized carbon steel.

2.8 TIES AND ANCHORS

A. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated.

 6. Stainless-Steel Sheet: ASTM A 666, Type 304.
 7. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
 8. Stainless-Steel Bars: ASTM A 276 or ASTM a 666, Type 304.

B. Corrugated Metal Ties: Metal strips not less than 7/8 inch wide with corrugations having a wavelength of and an amplitude of 0.06 to 0.10 inch made from 0.060-inch-thick, steel sheet, galvanized after fabrication.

C. Wire Ties, General: Unless otherwise indicated, size wire ties to extend at least halfway through veneer but with at least 5/8-inch cover on outside face. Outer ends of wires are bent 90 degrees and extend 2 inches parallel to face of veneer.

D. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches wide.

 1. Z-shaped ties with ends bent 90 degrees to provide hooks not less than 2 inches long may be used for masonry constructed from solid units.
 2. Where wythes do not align, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches.

E. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.

 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch-diameter, hot-dip galvanized steel wire.
F. Adjustable Anchors for Connecting to Stone: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.

1. Connector Section: Dovetail tabs for inserting into dovetail slots in concrete and attached to tie section; formed from 0.109-inch-thick, stainless-steel sheet.

2.9 MISCELLANEOUS ANCHORS

A. Unit Type Inserts in Concrete: Cast-iron or malleable-iron wedge-type inserts.

B. Dovetail Slots in Concrete: Furnish dovetail slots with filler strips, of slot size indicated, fabricated from 0.034-inch, galvanized steel sheet.

C. Anchor Bolts: Headed steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers; hot-dip galvanized to comply with ASTM A 153/A 153M, Class C; of dimensions indicated.

D. Post-installed Anchors: Torque-controlled expansion anchors or chemical anchors.

1. Load Capacity: Capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.

2. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5 unless otherwise indicated.

2.10 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Pre-molded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene PVC.

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 or PVC, complying with ASTM D 2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

C. Bond-Breaker Strips: Asphalt-saturated, organic roofing felt complying with ASTM D 226, Type I (No. 15 asphalt felt).

2.11 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures, unless otherwise indicated.
1. Do not use calcium chloride in mortar or grout.
2. Use portland cement-lime mortar unless otherwise indicated.

B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

C. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specification. Provide type N mortar for applications stated unless another type is indicated by structural.

D. Grout for Unit Masonry: Comply with ASTM C476
 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
 2. Proportion grout in accordance with ASTM C476, Table 1 or Paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 2. Verify that foundations are within tolerances specified.
 3. Verify that reinforcing dowels are properly placed.
 4. Verify that substrates are free of substances that would impair mortar bond.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Build chases and recesses to accommodate items specified in this and other Sections.

B. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.

C. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
3.3 BRACING OF MASONRY

3.4 Design, provide and install bracing that will assure stability of masonry during construction.

3.5 Selection of the bracing system is part of the construction means and methods for which the Contractor is responsible. Any required construction engineering resulting from these selections is the responsibility of the Contractor and shall be fully coordinated with the overall construction requirements.

3.6 The bracing shall be capable of securing partially or fully completed work against loads comparable in intensity of those for which the structure was designed, resulting from wind, seismic forces and erection operations.

3.7 Masonry has been designed to be braced by floor and roof framing. Bracing of these walls will be required to remain in place until floor and roof construction is complete.

3.8 TOLERANCES

A. Dimensions and Locations of Elements:

1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.

B. Lines and Levels:

1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.
7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch (1.5 mm).
C. Joints:

1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).
2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch (3 mm).
3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch (9 mm) or minus 1/4 inch (6 mm).
4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm).

3.9 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

C. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

D. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

E. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

F. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

G. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

H. Build nonload-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.

 1. Install compressible filler in joint between top of partition and underside of structure above.
 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch (13-mm) clearance between end of anchor rod and end of tube. Space anchors 48 inches (1200 mm) o.c. unless otherwise indicated.
3. Wedge nonload-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.

4. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 078443 "Joint Firestopping."

3.10 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:

1. Bed face shells in mortar and make head joints of depth equal to bed joints.
2. Bed webs in mortar in all courses of piers, columns, and pilasters.
3. Bed webs in mortar in grouted masonry, including starting course on footings.
4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.

B. Lay solid CMUs with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

3.11 MASONRY-CELL FILL

A. Pour lightweight-aggregate fill into cavities to fill void spaces. Maintain inspection ports to show presence of fill at extremities of each pour area. Close the ports after filling has been confirmed. Limit the fall of fill to one story high, but not more than 20 feet (6 m).

B. Install molded-polystyrene insulation units into masonry unit cells before laying units.

3.12 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).

1. Space reinforcement not more than 16 inches (406 mm) o.c.
2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.
3. Provide reinforcement not more than 8 inches (203 mm) above and below wall openings and extending 12 inches (305 mm) beyond openings.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

E. Cut and bend reinforcing units as directed by manufacturer for continuity at corners, returns, offsets, column fireproofing, pipe enclosures, and other special conditions.
3.13 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:

1. Provide an open space not less than 1 inch (25 mm) wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
3. Space anchors as indicated, but not more than 24 inches (610 mm) o.c. vertically and 36 inches (915 mm) o.c. horizontally.

3.14 CONTROL AND EXPANSION JOINTS

A. General: Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

3.15 LINTELS

A. Provide masonry lintels where shown and where openings of more than 12 inches (305 mm) for brick-size units and 24 inches (610 mm) for block-size units are shown without structural steel or other supporting lintels.

B. Provide minimum bearing of 8 inches (200 mm) at each jamb unless otherwise indicated.

3.16 REINFORCED UNIT MASONRY INSTALLATION

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.

1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other loads that may be placed on them during construction.

B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.

1. Accurately position and secure reinforcing against displacement from locations shown. Vertical reinforcing shall be in place prior to grouting and shall be held in position with bar positioners at top, bottom and at intervals not further apart than 192 bar diameters.
2. Make splices in bars where shown on Drawings. Lap splices shall be a minimum of 60 bar diameters unless shown otherwise. Bars shall be contact lap spliced and tied.
3. In wall construction, where multiple vertical bars are shown in one cell, provide clear space between bars of not less than 1 bar diameter or 1”, whichever is greater.
4. In columns and pilasters, provide clear space between bars of not less than 1 1/2 bar diameters or 1 1/2", whichever is greater.
5. Provide a minimum of 1/2" clearance between bars and masonry unit.
6. Do not bend bars after they have been embedded in grout or mortar.
7. Tolerance for placing reinforcing steel shall be in accordance with ACI 530.1/ASCE 6/TMS 602.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.

1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
2. Limit height of vertical grout pours to not more than 60 inches (1520 mm).

3.17 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Inspections: Special inspections according to Level 2 in TMS 402/ACI 530/ASCE 5.

1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
3. Place grout only after inspectors have verified proportions of site-prepared grout.

C. Testing Prior to Construction: One set of tests.

D. Testing Frequency: One set of tests for each 5000 sq. ft. (464 sq. m) of wall area or portion thereof.

E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C 140 for compressive strength.

F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.

G. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for mortar air content and compressive strength.

H. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.

I. Prism Test: For each type of construction provided, according to ASTM C 1314 at 7 days and at 28 days.
3.18 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.

B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 3. Protect adjacent stone and non-masonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
 4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
 5. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

3.19 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.

B. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 1. Crush masonry waste to less than 4 inches (100 mm) in each dimension.
 2. Mix masonry waste with at least two parts of specified fill material for each part of masonry waste. Fill material is specified in Section 312000 "Earth Moving."
 3. Do not dispose of masonry waste as fill within 18 inches (450 mm) of finished grade.

C. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.

D. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 042200
SECTION 05 12 00 - STRUCTURAL STEEL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Structural steel framing members and connections.
2. Shop prime painting and touch up painting in the field.
3. Temporary construction bracing.
4. Fabrication and erection inspection and testing.

B. Related Sections include the following:

1. Division 1 Section "Quality Requirements" for independent testing agency procedures and administrative requirements.
2. Division 1 Section “Submittals” for administrative requirements for the submission of shop drawings and other submittals.
3. Division 5 Section "Metal Fabrications" for steel lintels or shelf angles not attached to structural-steel frame, miscellaneous steel fabrications and other metal items not defined as structural steel.

1.3 DEFINITIONS

A. Structural Steel: Elements of structural-steel frame, as classified by AISC's "Code of Standard Practice for Steel Buildings and Bridges," that support design loads.

1.4 PERFORMANCE REQUIREMENTS

A. Connections: Provide details of simple shear connections required by the Contract Documents to be selected or completed by structural-steel fabricator to withstand ASD-service loads indicated and comply with other information and restrictions indicated.

2. Engineering Responsibility: Fabricator's responsibilities include using a qualified professional engineer to prepare structural analysis data for structural-steel connections.

B. Construction: Type PR, partially restrained.
1.5 SUBMITTALS

A. Submit in accordance with Division 1 Section “Submittals”.

B. Submittals for Review

1. Provide complete details and schedules for fabrication and shop assembly of members, erection plans, details, procedures, and diagrams showing sequence of erection of structural steel components.
 a. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 b. Include embedment drawings.
 c. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld.
 d. Indicate type, size, and length of bolts, distinguishing between shop and field bolts.

2. Shop drawings and erection drawings shall not be made by using reproductions of Contract Drawings.

3. Structural steel members for which shop drawings have not been reviewed shall not be fabricated. Engineer's review shall cover general locations, spacings, and details of design. Omission from shop drawings of any materials required by the Contract Documents shall not relieve the Contractor of the responsibility of furnishing and installing such materials, even though such shop drawings may have been reviewed and returned.

C. Submittals for Information:

1. Product Data: For each type of product indicated.
2. For structural-steel connections indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
3. Connection Calculations: Contractor shall design all connections not specifically detailed on the Drawings under direct supervision of a Professional Structural Engineer experienced in design of this work and licensed in the State of Texas. Submit design calculations for the connections designed by the contractor, prior to or with the steel shop drawings. Shop drawings containing connections for which calculations have not been received shall be returned unchecked as an incomplete submittal. Calculations shall be retained for the Engineer's file and will not be approved or returned.
 a. Connections shall be designed in accordance with the requirements specified in the Structural Drawings and Specifications.
 b. Beam connections: Submit a complete calculation for each different beam connection used and detailed on the shop drawings. Conditions which are similar may be grouped together so as to utilize a single connection design.
 c. Submit complete connection calculations for wind brace connections, truss connections, moment connections and other connections where specified on the Contract Drawings. Each calculation shall identify the location or locations for which the connection applies, the member mark(s) from the Contract Documents,
the piece mark(s) from the shop drawings, the member size, the design loading(s), member size, and the end of the member to which the connection applies.

d. The unit of measurement for the connection calculations must follow the United States customary system (USCS).

5. Qualification Data: For Installer, fabricator, and testing agency.

6. Mill Test Reports: Signed by manufacturers certifying that the following products comply with requirements:

 a. Structural steel including chemical and physical properties.
 b. Bolts, nuts, and washers including mechanical properties and chemical analysis.
 c. Shop primers.
 d. Nonshrink grout.

7. Source quality-control test reports.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Company specializing in performing the work of this section with minimum 5 years documented experience.

B. Fabricator Qualifications: Company specializing in performing the work of this section with minimum 10 years of documented experience.

C. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code-Steel."

D. The latest adopted edition of all standards referenced in this Section shall apply unless noted otherwise. In case of conflict between these Contract Documents and the referenced standard, the Contract Documents shall govern. In case of conflict between these Contract Documents and the Building Code, the more stringent shall govern.

E. The Contractor shall furnish fabrication and erection inspection and testing of all welds in accordance with AWS D1.1, Chapter 6. Submit records of inspections and tests to the Owner's testing laboratory for their review. The fabrication and erection inspectors shall be AWS certified welding inspectors.

F. All materials, fabrication procedures and field erection are subject to verification inspection and testing by the Owner's testing laboratory in both the shop and field. Such inspections and tests will not relieve the Contractor of the responsibility for providing materials and fabrication procedures in compliance with specified requirements.

G. Qualifications for Welding Work: Contractor shall be responsible for qualifying welding operators in accordance with the AWS "Standard Qualification Procedure." Provide certification to Owner's testing laboratory that welders to be employed in the work have satisfactorily passed AWS qualification tests. Recertification of welders shall be Contractor's responsibility.
H. Qualification of Welding Procedures: Contractor shall provide the testing laboratory with welding procedures which are to be used. Welding procedures shall be qualified prior to use in accordance with AWS D1.1, Part B.

I. Comply with applicable provisions of the following specifications and documents:

1. AISC's "Code of Standard Practice for Steel Buildings and Bridges"
2. AISC's "Specification for Structural Steel Buildings."
3. ASTM A6 "Specifications for General Requirements for Delivery of Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use."
4. AISC's "Specification for the Design of Steel Hollow Structural Sections."
5. RCSC's "Specification for Structural Joints Using High Strength Bolts."
6. AWS D1.1 "Structural Welding Code"
7. SSPC (Society for Protective Coatings), standards as noted.

J. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from erosion and deterioration.

1. Store fasteners in a protected place. Clean and relubricate bolts and nuts that become dry or rusty before use.
2. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.

1.8 COORDINATION

A. Furnish anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

PART 2 - PRODUCTS

2.1 STRUCTURAL-STEEL MATERIALS

A. Channels, Angles: ASTM A 36.

B. Plate and Bar: ASTM A 36.

C. Welding Electrodes: Comply with AWS requirements.
2.2 BOLTS, CONNECTORS, AND ANCHORS

A. High-Strength Bolts, Nuts, and Washers: ASTM F3125, grade A 325, Type 1, heavy hex steel structural bolts; ASTM A 563 heavy hex carbon-steel nuts; and ASTM F 436 hardened carbon-steel washers.
 1. Finish: Plain.

B. High-Strength Bolts, Nuts, and Washers: ASTM A 490, Type 1, heavy hex steel structural bolts; ASTM A 563 heavy hex carbon-steel nuts; and ASTM F 436 hardened carbon-steel washers, plain.

C. Shear Connectors: ASTM A 108, Grades 1015 through 1020, headed-stud type, cold-finished carbon steel; AWS D1.1, Type B.

 3. Finish: Plain.

2.3 PRIMER

A. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer.

B. Galvanizing Repair Paint: ASTM A 780.

C. Cold Galvanizing Compound shall be "ZRC" cold galvanizing compound as manufactured by ZRC Worldwide, Marshfield, Massachusetts.

2.4 FABRICATION

A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Comply with fabrication requirements, including tolerance limits, of AISC's "Code of Standard Practice for Steel Buildings and Bridges", AISC's "Specification for Structural Steel Buildings", and as indicated on accepted shop drawings.
 1. Mill tolerances shall conform to ASTM A6. Identify high-strength structural steel according to ASTM A 6/ A 6M and maintain markings until structural steel has been erected.
 2. Mark and match-mark materials for field assembly.
 3. Plates shall be free of gross discontinuities such as ruptures and delaminations. Plates shall comply with ASTM A578, Level 1.
 4. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.

B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1.
C. Bolt Holes: Cut, drill, mechanically thermal cut, or punch standard bolt holes perpendicular to metal surfaces.

D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads. Members in compression joints which depend on contact bearing shall have the bearing surfaces milled to a common plane. Members to be milled shall be completely assembled before milling.

E. Cleaning: Clean and prepare steel surfaces that are to remain unpainted according to SSPC-SP 1, "Solvent Cleaning, SSPC-SP 2, "Hand Tool Cleaning, or SSPC-SP 3, "Power Tool Cleaning."

F. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1 and manufacturer's written instructions.

G. Holes: Provide holes required for securing other work to structural steel and for passage of other work through steel framing members.

1. Cut, drill, or punch holes perpendicular to steel surfaces. Do not thermally cut bolt holes or enlarge holes by burning.
2. Base-Plate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
3. Weld threaded nuts to framing and other specialty items indicated to receive other work.

2.5 SHOP CONNECTIONS

A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM F3125, grade A 325 or grade A 490 Bolts" for type of bolt and type of joint specified.

1. Joint Type: Snug tightened.
2. Provide washers over all slotted holes in an outer ply.

B. Weld Connections: Comply with AWS D1.1 for welding procedure specifications, tolerances, appearance, and quality of welds and for methods used in correcting welding work. Welds not specified shall be continuous fillet welds designed to develop the full strength of the member. A combination of welds and bolts shall not be used to transmit stress at the same face of any connections. Clean completed welds prior to inspection. Slag shall be removed from all completed welds.

2.6 SHOP PRIMING

A. Shop prime steel surfaces except the following:

1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
2. Surfaces to be field welded.
3. Surfaces to be high-strength bolted with slip-critical connections.
5. Top surfaces of beams which support composite metal floor deck.
6. Headed shear studs, although overspray is acceptable.

B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:

1. SSPC-SP 2, "Hand Tool Cleaning."
2. SSPC-SP 3, "Power Tool Cleaning."

C. Priming: Immediately after surface preparation, apply primer according to manufacturer's written instructions and at rate recommended by SSPC to provide a dry film thickness of not less than 1.5 mils. Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.

2.7 GALVANIZING

A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel according to ASTM A 123/ A 123M.

1. Fill vent holes and grind smooth after galvanizing.

B. Galvanizing: The following steel shall be hot-dip galvanized (including any associated fasteners):

1. Lintels and shelf angles attached to structural-steel frame and located in exterior walls.
2. Railing exposed to weather.

2.8 SOURCE QUALITY CONTROL

A. Owner will engage an independent testing and inspecting agency to perform shop tests and inspections and prepare test reports.

1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections.

B. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

C. Bolted Connections: Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM F3125, grade A 325 or grade A 490 Bolts."

D. Welded Connections: In addition to visual inspection, shop-welded connections will be tested and inspected according to AWS D1.1 and the following inspection procedures, at testing agency's option:

1. Liquid Penetrant Inspection: ASTM E 165.
2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
4. Radiographic Inspection: ASTM E 94.

E. In addition to visual inspection, shop-welded shear connectors will be tested and inspected according to requirements in AWS D1.1 for stud welding and as follows:

1. Bend tests will be performed if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
2. Tests will be conducted on additional shear connectors if weld fracture occurs on shear connectors already tested, according to requirements in AWS D1.1.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments, with steel erector present, for compliance with requirements.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Design of temporary bracing and supports shall be the responsibility of the Contractor. Remove temporary supports when permanent structural steel, connections, and bracing are in place, unless otherwise indicated.

3.3 ERECTION

A. Set structural steel accurately in locations and to elevations indicated and according to AISC's "Code of Standard Practice for Steel Buildings and Bridges" and "Specification for Structural Steel Buildings--Allowable Stress Design and Plastic Design," unless closer tolerances are required for proper fitting of adjoining or enclosing materials, in which case the more stringent shall apply.

1. Set base and bearing plates for structural members on wedges, shims, or setting nuts as required.
2. Weld plate washers to top of base plate.
3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of base or bearing plate before packing with grout.
4. Promptly pack grout solidly between bearing surfaces and base or bearing plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.

5. Grout under baseplates in accordance with Section 033000.

D. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

1. Level and plumb individual members of structure.

2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.

E. Splice members only where indicated. Any member having a splice not shown and detailed on the accepted shop drawings shall be rejected.

F. Do not field cut or alter structural members without approval of Architect/Engineer. Do not use thermal cutting during erection unless approved by Architect/Engineer. Finish thermally cut sections within smoothness limits in AWS D1.1.

G. Gas Cutting: Do not use gas cutting torches in the field to correct fabrication errors in structural framing.

H. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.

I. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1 and manufacturer's written instructions.

3.4 FIELD CONNECTIONS

A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM F3125, grade A 325 or grade A 490 Bolts" for type of bolt and type of joint specified.

1. Joint Type: Snug tightened.

2. A307 bolts and high-strength (ASTM F3125, grade A325 and grade A490) bolts noted to be "snug-tight" shall be tightened using a few impacts of an impact wrench or the full effort of a man using an ordinary spud wrench, bringing the plies into contact.

3. High-strength bolts which are not specifically designated to be "snug-tight" shall be tightened to provide at least the minimum tension shown in Table 4 of the "Specification for Structural Joints using ASTM F3125, grade A325 and grade A490 Bolts." Tightening
shall be done by the turn-of-the-nut method, with direct tension indicators, or by properly calibrated wrenches.

4. Bolts tightened with a calibrated wrench or by torque control shall have a hardened washer under the element (nut or bolt head) turned in tightening.

5. Hardened washers shall be placed over slotted holes in an outer ply. Hardened beveled washers shall be used where the outer face of the bolted parts has a slope greater than 1:20 with respect to the bolt axis.

B. Weld Connections: Comply with AWS D1.1 for welding procedure specifications, tolerances, appearance, and quality of welds and for methods used in correcting welding work. Welds not specified shall be continuous fillet welds designed to develop the full strength of the member. A combination of welds and bolts shall not be used to transmit stress at the same face of any connections. Clean completed welds prior to inspection. Slag shall be removed from all completed welds.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to inspect field welds and high-strength bolted connections.

B. Bolted Connections: Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM F3125, grade A 325 or grade A 490 Bolts."

C. Welded Connections: Field welds will be visually inspected according to AWS D1.1.

1. In addition to visual inspection, field welds will be tested according to AWS D1.1 and the following inspection procedures, at testing agency's option:

 a. Liquid Penetrant Inspection: ASTM E 165.
 b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 c. Ultrasonic Inspection: ASTM E 164.
 d. Radiographic Inspection: ASTM E 94.

D. In addition to visual inspection, test and inspect field-welded shear connectors according to requirements in AWS D1.1 for stud welding and as follows:

 1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
 2. Conduct tests on additional shear connectors if weld fracture occurs on shear connectors already tested, according to requirements in AWS D1.1.

E. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.
3.6 REPAIRS AND PROTECTION

A. Repair damaged galvanized coatings on galvanized items with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions.

B. Touch-up Cold Galvanizing: Touch up areas of hot dip galvanized members where galvanizing has been abraded during shipping and erection and areas where galvanizing has been removed or damaged due to welding. Apply cold galvanizing compound in accordance with the manufacturer's instructions to a minimum dry film thickness of 2.0 mils.

END OF SECTION 05 12 00
SECTION 054000 - COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Exterior non-load-bearing wall framing.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for masonry shelf angles and connections.
 2. Section 092216 "Non-Structural Metal Framing" for interior non-load-bearing, metal-stud framing and ceiling-suspension assemblies.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of cold-formed steel framing product and accessory.

B. Shop Drawings:
 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.

C. Delegated-Design Submittal: For cold-formed steel framing, submittal calculations and drawings shall be signed and sealed by engineer licensed in the state of Texas.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Welding certificates.

C. Product Test Reports: For each listed product, for tests performed by a qualified testing agency.
1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

B. Product Tests: Mill certificates or data from a qualified independent testing agency indicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.

C. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.6 DELIVERY, STORAGE, AND HANDLING

A. Protect cold-formed steel framing from corrosion, moisture staining, deformation, and other damage during delivery, storage, and handling.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AllSteel & Gypsum Products, Inc.
 2. California Expanded Metal Products Company.
 3. ClarkWestern Building Systems, Inc.
 4. Consolidated Fabricators Corp.; Building Products Division.
 5. Craco Mfg., Inc.
 6. Custom Stud Inc.
 7. Design Shapes in Steel.
 8. Dietrich Metal Framing; a Worthington Industries Company.
 10. MarinoWARE.
 11. Nuconsteel; a Nucor Company.
 12. Olmar Supply, Inc.
 13. Quail Run Building Materials, Inc.
 14. SCAFCO Corporation.
 15. Southeastern Stud & Components, Inc.
 16. State Building Products, Inc.
 19. Steel Structural Systems.
 20. Steeler, Inc.
 22. Telling Industries, LLC.
 23. United Metal Products, Inc.
 24. United Steel Manufacturing.
2.2 PERFORMANCE REQUIREMENTS

A. For bidding purposes:

1. Typical perimeter wall studs shall consist of 6” deep with 2” flange (18 gauge minimum) studs spaced at 16” o.c.
2. Typical stud spacing at corners shall be reduced to 12” o.c. with the limits of reduced spacing as determined per the Building Code.
3. Multi-studs shall be used at jambs of openings as required by design.

B. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel framing.

C. Structural Performance: Provide cold-formed steel framing capable of withstanding design loads within limits and under conditions indicated.

1. Design Loads: As indicated.
2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:
 a. Interior Non-Load-Bearing Wall Framing: Horizontal deflection of $1/360$ of the wall height under a horizontal load of 5 lbf/sq. ft.
 b. Exterior Non-Load-Bearing Framing: Horizontal deflection of $1/600$ of the wall height.
 c. Roof Rafter and Truss Framing: Vertical deflection of $1/240$ of the horizontally projected span for live loads.
 d. Ceiling Joist Framing: Vertical deflection of $1/240$ of the span for live loads and 1/240 for total loads of the span.
3. Design framing systems to provide for movement of framing members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 deg F.
4. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure as follows:
 a. Upward and downward movement of L/360 for interior and L/600 for perimeter.
5. Design exterior non-load-bearing wall framing to accommodate horizontal deflection without regard for contribution of sheathing materials.

D. Cold-Formed Steel Framing Design Standards:

2. Wall Studs: AISI S211.
3. Headers: AISI S212.

E. AISI Specifications and Standards: Unless more stringent requirements are indicated, comply with AISI S100 and AISI S200.
F. Fire-Resistance Ratings: Comply with ASTM E 119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

2.3 COLD-FORMED STEEL FRAMING, GENERAL

A. Steel Sheet: ASTM A 1003/A 1003M, Structural Grade, Type H, metallic coated, of grade and coating weight as follows:
 1. Grade: **As required by structural performance**.
 2. Coating: **G60**.

B. Steel Sheet for **Vertical Deflection** and **Drift** Clips: ASTM A 653/A 653M, structural steel, zinc coated, of grade and coating as follows:
 1. Grade: **As required by structural performance**.
 2. Coating: **G60**.

2.4 EXTERIOR NON-LOAD-BEARING WALL FRAMING

A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: **As required by structural performance**.
 2. Flange Width: **As required by structural performance**.

B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: **As required by structural performance**.
 2. Flange Width: **As required by structural performance**.

C. Vertical Deflection Clips: Manufacturer's standard [bypass] [head] clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.
 1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
 a. AllSteel & Gypsum Products, Inc.
 b. ClarkWestern Building Systems, Inc.
 c. Dietrich Metal Framing; a Worthington Industries company.
 d. MarinoWARE.
 e. SCAFCO Corporation.
 f. Steel Network, Inc. (The).
 g. Steeler, Inc.
D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:

1. Minimum Base-Metal Thickness: **As required by structural performance.**
2. Flange Width: **As required by structural performance.**

E. Double Deflection Tracks: Manufacturer's double, deep-leg, U-shaped steel tracks, consisting of nested inner and outer tracks; unpunched, with unstiffened flanges.

1. Outer Track: Of web depth to allow free vertical movement of inner track, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:

a. Minimum Base-Metal Thickness: **As required by structural performance.**
 b. Flange Width: **As required by structural performance.**

2. Inner Track: Of web depth indicated, and as follows:

a. Minimum Base-Metal Thickness: **As required by structural performance.**
 b. Flange Width: **As required by structural performance.**

F. Drift Clips: Manufacturer's standard bypass or head clips, capable of isolating wall stud from upward and downward vertical displacement and lateral drift of primary structure through positive mechanical attachment to stud web and structure.

G. Fabricate steel-framing accessories from steel sheet, ASTM A 1003/A 1003M, Structural Grade, Type H, metallic coated, of same grade and coating weight used for framing members.

H. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:

1. Supplementary framing.
2. Bracing, bridging, and solid blocking.
3. Web stiffeners.
4. Anchor clips.
5. End clips.
6. Foundation clips.
7. Gusset plates.
9. Joist hangers and end closures.

2.5 ANCHORS, CLIPS, AND FASTENERS

A. Steel Shapes and Clips: ASTM A 36/A 36M, zinc coated by hot-dip process according to ASTM A 123/A 123M.
B. Anchor Bolts: ASTM F 1554, Grade 36, threaded carbon-steel hex-headed bolts and carbon-steel nuts; and flat, hardened-steel washers; zinc coated by hot-dip process according to ASTM A 153/A 153M, Class C.

C. Expansion Anchors: Fabricated from corrosion-resistant materials, with allowable load or strength design capacities calculated according to ICC-ES AC193 and ACI 318 greater than or equal to the design load, as determined by testing per ASTM E 488 conducted by a qualified testing agency.

D. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with allowable load capacities calculated according to ICC-ES AC70, greater than or equal to the design load, as determined by testing per ASTM E 1190 conducted by a qualified testing agency.

E. Mechanical Fasteners: ASTM C 1513, corrosion-resistant-coated, self-drilling, self-tapping, steel drill screws.

 1. Head Type: Low-profile head beneath sheathing, manufacturer's standard elsewhere.

F. Welding Electrodes: Comply with AWS standards.

2.6 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: SSPC-Paint 20 or MIL-P-21035B.

B. Cement Grout: Portland cement, ASTM C 150, Type I; and clean, natural sand, ASTM C 404. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.

C. Nonmetallic, Nonshrink Grout: Premixed, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, portland cement, shrinkage-compensating agents, and plasticizing and water-reducing agents, complying with ASTM C 1107/C 1107M, with fluid consistency and 30-minute working time.

D. Shims: Load bearing, high-density multimonomer plastic, and nonleaching; or of cold-formed steel of same grade and coating as framing members supported by shims.

E. Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer's standard widths to match width of bottom track or rim track members.

2.7 FABRICATION

A. Fabricate cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.

 1. Fabricate framing assemblies using jigs or templates.
 2. Cut framing members by sawing or shearing; do not torch cut.
3. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners and install according to Shop Drawings, with screw penetrating joined members by no fewer than three exposed screw threads.

4. Fasten other materials to cold-formed steel framing by welding, bolting, pneumatic pin fastening, or screw fastening, according to Shop Drawings.

B. Reinforce, stiffen, and brace framing assemblies to withstand handling, delivery, and erection stresses. Lift fabricated assemblies to prevent damage or permanent distortion.

C. Fabrication Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:
 1. Spacing: Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.
 2. Squareness: Fabricate each cold-formed steel framing assembly to a maximum out-of-square tolerance of 1/8 inch.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine supporting substrates and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistive materials.
 B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed framing without reducing thickness of fire-resistive materials below that are required to obtain fire-resistance rating indicated. Protect remaining fire-resistive materials from damage.
 C. Install load bearing shims or grout between the underside of load-bearing wall bottom track and the top of foundation wall or slab at locations with a gap larger than 1/4 inch to ensure a uniform bearing surface on supporting concrete or masonry construction.
 D. Install sealer gaskets at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.
3.3 INSTALLATION, GENERAL

A. Cold-formed steel framing may be shop or field fabricated for installation, or it may be field assembled.

B. Install cold-formed steel framing according to AISI S200 and to manufacturer's written instructions unless more stringent requirements are indicated.

C. Install shop- or field-fabricated, cold-formed framing and securely anchor to supporting structure.
 1. Screw, bolt, or weld wall panels at horizontal and vertical junctures to produce flush, even, true-to-line joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch.

D. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.
 1. Cut framing members by sawing or shearing; do not torch cut.
 2. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners and install according to Shop Drawings, and complying with requirements for spacing, edge distances, and screw penetration.

E. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members.

F. Install temporary bracing and supports to secure framing and support loads comparable in intensity to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.

G. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.

H. Install insulation, specified in Section 072100 "Thermal Insulation," in built-up exterior framing members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work.

I. Fasten hole reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings.

J. Erection Tolerances: Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:
 1. Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.
3.4 EXTERIOR NON-LOAD-BEARING WALL INSTALLATION

A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure as indicated.

B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:
 1. Stud Spacing: As shown on Shop Drawings.

C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.

D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 1. Install single deep-leg deflection tracks and anchor to building structure.
 2. Install double deep-leg deflection tracks and anchor outer track to building structure.
 3. Connect vertical deflection clips to bypassing or infill studs and anchor to building structure.
 4. Connect drift clips to cold-formed metal framing and anchor to building structure.

E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches apart. Fasten at each stud intersection.
 1. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.
 a. Install solid blocking at centers indicated on Shop Drawings.
 2. Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
 3. Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
 4. Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.

F. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.5 FIELD QUALITY CONTROL

A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Field and shop welds will be subject to testing and inspecting.
C. Testing agency will report test results promptly and in writing to Contractor and Architect.

D. Remove and replace work where test results indicate that it does not comply with specified requirements.

E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.6 REPAIRS AND PROTECTION

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions.

B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel framing is without damage or deterioration at time of Substantial Completion.

END OF SECTION 054000
SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel framing and supports for mechanical and electrical equipment.
2. Steel framing and supports for applications where framing and supports are not specified in other Sections.
3. Non-Decorative Metal bollards.
4. Loose bearing and leveling plates for applications where they are not specified in other Sections.

B. Products furnished, but not installed, under this Section include the following:

1. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
2. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.

C. Related Requirements:

1. Section 033000 "Cast-in-Place Concrete" for installing anchor bolts, steel pipe sleeves, slotted-channel inserts, wedge-type inserts, and other items cast into concrete.
2. Section 051200 "Structural Steel Framing."

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
1.4 ACTION SUBMITTALS

A. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:
 1. Steel framing and supports for countertops.
 2. Metal bollards.

B. Delegated-Design Submittal: For ladders, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Welding certificates.

C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

D. Research/Evaluation Reports: For post-installed anchors, from ICC-ES.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
 3. AWS D1.6/D1.6M, "Structural Welding Code - Stainless Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design ladders.
B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 METALS

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

C. Stainless-Steel Sheet, Strip, and Plate: ASTM A 240/A 240M or ASTM A 666, Type 304.

D. Stainless-Steel Bars and Shapes: ASTM A 276, Type 304.

E. Steel Tubing: ASTM A 500/A 500M, cold-formed steel tubing.

F. Steel Pipe: ASTM A 53/A 53M, Standard Weight (Schedule 40) unless otherwise indicated.

G. Zinc-Coated Steel Wire Rope: ASTM A 741.

1. Wire-Rope Fittings: Hot-dip galvanized-steel connectors with capability to sustain, without failure, a load equal to minimum breaking strength of wire rope with which they are used.

H. Slotted Channel Framing: Cold-formed metal box channels (struts) complying with MFMA-4.

2. Material: Cold-rolled steel, ASTM A 1008/A 1008M, commercial steel, Type B structural steel, Grade 33.

I. Cast Iron: Either gray iron, ASTM A 48/A 48M, or malleable iron, ASTM A 47/A 47M, unless otherwise indicated.

M. Aluminum Castings: ASTM B 26/B 26M, Alloy 443.0-F.

O. Bronze Castings: ASTM B 584, Alloy UNS No. C83600 (leaded red brass) or No. C84400 (leaded semired brass).
2.3 FASTENERS

A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.

1. Provide stainless-steel fasteners for fastening aluminum.
2. Provide stainless-steel fasteners for fastening stainless steel.
3. Provide bronze fasteners for fastening bronze.

B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A; with hex nuts, ASTM A 563; and, where indicated, flat washers.

C. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F 593; with hex nuts, ASTM F 594; and, where indicated, flat washers; Alloy Group 1.

D. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.

1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.

E. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.

F. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.

1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, unless otherwise indicated.

G. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches by length indicated with anchor straps or studs not less than 3 inches long at not more than 8 inches o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.

2.4 MISCELLANEOUS MATERIALS

A. Shop Primers: Provide primers that comply with Section 099113 "Exterior Painting," and Section 099123 Interior Painting,"

B. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.

C. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.
D. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

E. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187/D 1187M.

F. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

G. Concrete: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normal-weight, air-entrained, concrete with a minimum 28-day compressive strength of 3000 psi.

H. Provide final painting of all exposed steel unless noted otherwise.

2.5 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

D. Form exposed work with accurate angles and surfaces and straight edges.

E. Weld corners and seams continuously to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.

G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

J. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches, with a minimum 6-inch embedment and 2-inch hook, not less than 8 inches from ends and corners of units and 24 inches o.c., unless otherwise indicated.

2.6 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.

1. Fabricate units from slotted channel framing where indicated.
2. Furnish inserts for units installed after concrete is placed.

C. Galvanize miscellaneous framing and supports where indicated.

D. Metal Bar Grating Standards: Comply with NAAMM MBG 531, "Metal Bar Grating Manual."

2.7 MISCELLANEOUS STEEL TRIM

A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.

B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.

1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.

C. Galvanize and prime exterior miscellaneous steel trim.

2.8 METAL BOLLARDS

A. Fabricate metal bollards from Schedule 40 steel pipe 1/4-inch wall-thickness rectangular steel piping.

1. Cap bollards with 1/4-inch-thick steel plate.
2. Where bollards are indicated to receive controls for door operators, provide cutouts for controls and holes for wire.
B. Fabricate sleeves for bollard anchorage from steel pipe with 1/4-inch-thick steel plate welded to bottom of sleeve. Make sleeves not less than 8 inches deep and 3/4 inch larger than OD of bollard.

C. Fabricate internal sleeves for removable bollards from Schedule 40 steel pipe or 1/4-inch wall-thickness steel tubing with an OD approximately 1/16 inch less than ID of bollards. Match drill sleeve and bollard for 3/4-inch steel machine bolt.

2.9 LOOSE BEARING AND LEVELING PLATES

A. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.

B. Galvanize plates.

2.10 LOOSE STEEL LINTELS

A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.

B. Size loose lintels to provide bearing length at each side of openings per structural drawings.

C. Galvanize and prime loose steel lintels located in exterior walls.

2.11 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.12 FINISHES, GENERAL

A. Finish metal fabrications after assembly.

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.13 STEEL AND IRON FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.

1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.

B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.
C. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.

1. Shop prime with universal shop primer.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

F. Corrosion Protection: Coat concealed surfaces of aluminum that come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:

1. Cast Aluminum: Heavy coat of bituminous paint.
2. Extruded Aluminum: Two coats of clear lacquer.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.
3.3 INSTALLING METAL BOLLARDS

A. Fill metal-capped bollards solidly with concrete and allow concrete to cure seven days before installing.

1. Do not fill removable bollards with concrete.

B. Anchor bollards in place with concrete footings. Center and align bollards in holes 3 inches above bottom of excavation. Place concrete and vibrate or tamp for consolidation. Support and brace bollards in position until concrete has cured.

C. Place removable bollards over internal sleeves and secure with 3/4-inch machine bolts and nuts. After tightening nuts, drill holes in bolts for inserting padlocks. Owner furnishes padlocks.

D. Fill bollards solidly with concrete, mounding top surface to shed water.

1. Do not fill removable bollards with concrete.

3.4 INSTALLING BEARING AND LEVELING PLATES

B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with nonshrink grout. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.5 ADJUSTING AND CLEANING

A. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Section 099113 "Exterior Painting." Section 099123 "Interior Painting."

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780/A 780M.

C. Provide final painting of all exposed steel unless noted otherwise.

END OF SECTION 055000
SECTION 061000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Framing with dimension lumber.
2. Wood blocking cants and nailers.
3. Wood sleepers.
4. Plywood backing panels.

B. Related Requirements:

1. Section 061600 "Sheathing" for sheathing, subflooring, and underlayment.

1.3 DEFINITIONS

A. Boards or Strips: Lumber of less than 2 inches nominal size in least dimension.

B. Dimension Lumber: Lumber of 2 inches nominal size or greater but less than 5 inches nominal size in least dimension.

C. Exposed Framing: Framing not concealed by other construction.

D. OSB: Oriented strand board.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.

1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.

2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D5664.

4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

B. Fastener Patterns: Full-size templates for fasteners in exposed framing.

1.5 INFORMATIONAL SUBMITTALS

A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.

B. Evaluation Reports: For the following, from ICC-ES:

1. Wood-preservative-treated wood.
2. Fire-retardant-treated wood.
3. Engineered wood products.
5. Post-installed anchors.
6. Metal framing anchors.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Stack wood products flat with spacers beneath and between each bundle to provide air circulation. Protect wood products from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
1. Factory mark each piece of lumber with grade stamp of grading agency.
2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
3. Dress lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 15 percent unless otherwise indicated.

C. Engineered Wood Products: Acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.

1. Allowable design stresses, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.

1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
2. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not require incising, contain colorants, bleed through, or otherwise adversely affect finishes.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece.

D. Application: Treat items indicated on Drawings, and the following:

1. Wood cant, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.
3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
4. Wood framing members that are less than 18 inches above the ground in crawlspaces or unexcavated areas.
5. Wood floor plates that are installed over concrete slabs-on-grade.
2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.

1. Treatment shall not promote corrosion of metal fasteners.
2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D2898. Use for exterior locations and where indicated.
3. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D3201 at 92 percent relative humidity. Use where exterior type is not indicated.
4. Design Value Adjustment Factors: Treated lumber shall be tested according to ASTM D5664 and design value adjustment factors shall be calculated according to ASTM D6841.

C. Kiln-dry lumber after treatment to maximum moisture content of 19 percent. Kiln-dry plywood after treatment to maximum moisture content of 15 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.

1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece.

E. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not bleed through, contain colorants, or otherwise adversely affect finishes.

F. Application: Treat items indicated on Drawings.

2.4 DIMENSION LUMBER FRAMING

A. Joists and Rafters: As indicated on drawings.
2.5 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:

1. Blocking.
2. Nailers.
3. Rooftop equipment bases and support curbs.
5. Furring.

B. Dimension Lumber Items: match grade and species of joist and rafter framing.

C. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

D. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

E. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.6 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: As indicated on drawings.

2.7 FASTENERS

A. General: Fasteners shall be of size and type indicated and shall comply with requirements specified in this article for material and manufacture.

1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A153.

B. Nails, Brads, and Staples: ASTM F1667.

C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

D. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on [ICC-ES AC01] [ICC-ES AC58] [ICC-ES AC193] [or] [ICC-ES AC308] as appropriate for the substrate.
2. Material: Stainless steel with bolts and nuts complying with ASTM F593 and ASTM F594, Alloy Group 1 or 2

2.8 METAL FRAMING ANCHORS

A. Allowable design loads, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.

B. Galvanized-Steel Sheet: Hot-dip, zinc-coated steel sheet complying with ASTM A653, G60 coating designation.
 1. Use for interior locations unless otherwise indicated.

C. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A653/A653M; structural steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.
 1. Use for wood-preservative-treated lumber and where indicated.

D. Joist Ties: Flat straps, with holes for fasteners, for tying joists together over supports.
 1. Width: As indicated.
 2. Thickness: As indicated.
 3. Length: As indicated.

E. Rafter Tie-Downs: Bent strap tie for fastening rafters or roof trusses to wall studs below, 1-1/2 inches wide by 0.050 inch thick.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

B. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer's written instructions.

C. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locate nailers, blocking, and similar supports to comply with requirements for attaching other construction.
D. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels.

E. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

F. Install sill sealer gasket to form continuous seal between sill plates and foundation walls.

G. Do not splice structural members between supports unless otherwise indicated.

H. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches o.c.

I. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows:
 1. Fire block furred spaces of walls, at each floor level, at ceiling, and at not more than 96 inches o.c. with solid wood blocking or noncombustible materials accurately fitted to close furred spaces.
 2. Fire block concealed spaces of wood-framed walls and partitions at each floor level, at ceiling line of top story, and at not more than 96 inches o.c. Where fire blocking is not inherent in framing system used, provide closely fitted solid wood blocks of same width as framing members and 2-inch nominal thickness.
 3. Fire block concealed spaces between floor sleepers with same material as sleepers to limit concealed spaces to not more than 100 sq. ft. and to solidly fill space below partitions.
 4. Fire block concealed spaces behind combustible cornices and exterior trim at not more than 20 feet o.c.

J. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

K. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 1. Use inorganic boron for items that are continuously protected from liquid water.
 2. Use copper naphthenate for items not continuously protected from liquid water.

L. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

M. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.

3. ICC-ES evaluation report for fastener.

N. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

O. For exposed work, arrange fasteners in straight rows parallel with edges of members, with fasteners evenly spaced, and with adjacent rows staggered.

1. Comply with indicated fastener patterns where applicable.
2. Use finishing nails unless otherwise indicated. Countersink nail heads and fill holes with wood filler.
3. Use common nails unless otherwise indicated. Drive nails snug but do not countersink nail heads.

3.2 WOOD BLOCKING, AND NAILER INSTALLATION

A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.

B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

C. Provide permanent grounds of dressed, pressure-preservative-treated, key-beveled lumber not less than 1-1/2 inches wide and of thickness required to bring face of ground to exact thickness of finish material. Remove temporary grounds when no longer required.

3.3 CEILING JOIST AND RAFTER FRAMING INSTALLATION

A. Ceiling Joists: Install with crown edge up and complying with requirements specified above for floor joists. Face nail to ends of parallel rafters.

1. Where ceiling joists are at right angles to rafters, provide additional short joists parallel to rafters from wall plate to first joist; nail to ends of rafters and to top plate, and nail to first joist or anchor with framing anchors or metal straps. Provide 1-by-8-inch nominal- size or 2-by-4-inch nominal- size stringers spaced 48 inches o.c. crosswise over main ceiling joists.

B. Rafters: Notch to fit exterior wall plates and toe nail use metal framing anchors. Double rafters to form headers and trimmers at openings in roof framing, if any, and support with metal hangers. Where rafters abut at ridge, place directly opposite each other and nail to ridge member or use metal ridge hangers.
1. At valleys, provide double-valley rafters of size indicated or, if not indicated, of same thickness as regular rafters and 2 inches deeper. Bevel ends of jack rafters for full bearing against valley rafters.

2. At hips, provide hip rafter of size indicated or, if not indicated, of same thickness as regular rafters and 2 inches deeper. Bevel ends of jack rafters for full bearing against hip rafter.

C. Provide collar beams (ties) as indicated or, if not indicated, provide 1-by-6-inch nominal-size boards between every third pair of rafters, but not more than 48 inches o.c. Locate below ridge member, at third point of rafter span. Cut ends to fit roof slope and nail to rafters.

D. Provide special framing as indicated for eaves, overhangs, dormers, and similar conditions if any.

3.4 PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

B. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 061000
SECTION 061600 - SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Wall sheathing.
 3. Wood sheathing panels.
 B. Related Requirements:
 1. Section 061000 "Rough Carpentry for plywood backing panels.
 2. Section 072500 "Weather Barriers" for water-resistive barrier.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Indicate type of preservative used and net amount of preservative retained.
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Include physical properties of treated materials.
 3. For fire-retardant treatments, include physical properties of treated plywood both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5516.
 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.
 5. Include copies of warranties from chemical treatment manufacturers for each type of treatment.

1.4 DELIVERY, STORAGE, AND HANDLING
 A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For assemblies with fire-resistance ratings, provide materials and construction identical to those of assemblies tested for fire resistance per ASTM E 119 by a testing and inspecting agency acceptable to authorities having jurisdiction.

2.2 WALL SHEATHING

A. Glass-Mat Gypsum Wall Sheathing: ASTM C 1177/1177M.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corporation; GlasRoc.
 b. G-P Gypsum Corporation; Dens-Glass Gold.
 c. National Gypsum Company; Gold Bond e(2)XP.
 d. Temple-Inland Inc.; GreenGlass.
 e. United States Gypsum Co.; Securock.

2. Type and Thickness: Regular, 5/8 inch thick.

2.3 PLYWOOD SHEATHING

A. Plywood Sheathing: Exposure 1, Structural I sheathing.

2. Nominal Thickness: Not less than 5/8”.

2.4 FIRE-RETARDANT-TREATED PLYWOOD

A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article that are acceptable to authorities having jurisdiction and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.

1. Use treatment that does not promote corrosion of metal fasteners.
2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.
3. Design Value Adjustment Factors: Treated lumber plywood shall be tested according to ASTM D 5516 and design value adjustment factors shall be calculated according to ASTM D 6305. Span ratings after treatment shall be not less than span ratings specified.
C. Kiln-dry material after treatment to a maximum moisture content of 15 percent. Do not use material that is warped or does not comply with requirements for untreated material.

D. Identify fire-retardant-treated plywood with appropriate classification marking of qualified testing agency.

E. Application: Treat all plywood unless otherwise indicated.

2.5 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. For wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.
2. For parapet sheathing, provide fasteners with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B 117.

B. Nails, Brads, and Staples: ASTM F 1667.

D. Wood Screws: ASME B18.6.1.

E. Screws for Fastening Wood Structural Panels to Cold-Formed Metal Framing: ASTM C 954, except with wafer heads and reamer wings, length as recommended by screw manufacturer for material being fastened.

1. For wall and roof sheathing panels, provide screws with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B 117.

F. Screws for Fastening Gypsum Sheathing to Cold-Formed Metal Framing: Steel drill screws, in length recommended by sheathing manufacturer for thickness of sheathing to be attached, with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B 117.

1. For steel framing less than 0.0329 inch thick, use screws that comply with ASTM C 1002.

2.6 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sealant for Glass-Mat Gypsum Sheathing: Elastomeric, medium-modulus, neutral-curing silicone joint sealant compatible with joint substrates formed by gypsum sheathing and other materials, recommended by sheathing manufacturer for application indicated and complying with requirements for elastomeric sealants specified in Section 079200 "Joint Sealants."
2.7 MISCELLANEOUS MATERIALS

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:

 1. Table 2304.9.1, "Fastening Schedule," in ICC's "International Building Code."

D. Coordinate wall sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.

E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

F. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 GYPSUM SHEATHING INSTALLATION

A. Comply with GA-253 and with manufacturer's written instructions.

 1. Fasten gypsum sheathing to cold-formed metal framing with screws.
 2. Install boards with a 3/8-inch gap where non-load-bearing construction abuts structural elements.
 3. Install boards with a 1/4-inch gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.

B. Apply fasteners so heads bear tightly against face of sheathing, but do not cut into facing.

C. Horizontal Installation: Install sheathing with V-grooved edge down and tongue edge up. Interlock tongue with groove to bring long edges in contact with edges of adjacent boards without forcing. Abut ends of boards over centers of studs, and stagger end joints of adjacent boards not less than one stud spacing. Attach boards at perimeter and within field of board to each steel stud.

 1. Space fasteners approximately 8 inches o.c. and set back a minimum of 3/8 inch from edges and ends of boards.
D. Vertical Installation: Install board vertical edges centered over studs. Abut ends and edges of each board with those of adjacent boards. Attach boards at perimeter and within field of board to each stud.

1. Space fasteners approximately 8 inches o.c. and set back a minimum of 3/8 inch from edges and ends of boards.

E. Seal sheathing joints according to sheathing manufacturer's written instructions.

1. Apply elastomeric sealant to joints and fasteners and trowel flat. Apply sufficient amount of sealant to completely cover joints and fasteners after troweling. Seal other penetrations and openings.

END OF SECTION 061600
SECTION 062013 - EXTERIOR FINISH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Interior and Exterior Tongue and Groove wood soffits, ceilings, and trim.

B. Related Requirements:

1. Section 061000 "Rough Carpentry" for furring, blocking, and other carpentry work not exposed to view and for framing exposed to view.

2. Section 099300 “Staining and Transparent Finishing”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials, dimensions, profiles, textures, and colors and include construction and application details.

1. Include data for wood-preservative treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained. Include chemical-treatment manufacturer's written instructions for finishing treated material.

2. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced before shipment to Project site to levels specified.

B. Samples: For each exposed product and for each color and texture specified.

C. Samples for Initial Selection: For each type of product involving selection of colors, profiles, or textures.

D. Samples for Verification:

1. For each species and cut of lumber and panel products, with half of exposed surface finished; 50 sq. in. (300 sq. cm) for lumber and 8 by 10 inches (200 by 250 mm) for panels.
2. For engineered wood siding and soffits 50 sq. in. (300 sq. cm) for board types and 8 by 10 inches (200 by 250 mm) for panels.
3. For cellular PVC trim, with half of exposed surface finished; 50 sq. in. (300 sq. cm).
4. For foam-plastic moldings, with half of exposed surface finished; 50 sq. in. (300 sq. cm).

1.4 INFORMATIONAL SUBMITTALS

A. Compliance Certificates:
 1. For lumber that is not marked with grade stamp.
 2. For preservative-treated wood that is not marked with treatment-quality mark.

B. Evaluation Reports: For the following, from ICC-ES:
 1. Wood-preservative-treated wood.

C. Sample Warranties: For manufacturer's warranties.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber, plywood, and other panels flat with spacers between each bundle to provide air circulation.
 1. Protect materials from weather by covering with waterproof sheeting, securely anchored.
 2. Provide for air circulation around stacks and under coverings.

1.6 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecast weather conditions permit work to be performed and at least one coat of specified finish can be applied without exposure to rain, snow, or dampness.

B. Do not install finish carpentry materials that are wet, moisture damaged, or mold damaged.
 1. Indications that materials are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that materials are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

1.7 WARRANTY

A. Manufacturer's Warranty for Engineered Wood Siding soffits and trim: Manufacturer agrees to repair or replace components that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, deformation or deterioration beyond normal weathering.
2. Warranty Period for Factory-Applied Finish: Five years from date of Substantial Completion.
3. Warranty Period for Siding Soffits and Trim (Excluding Finish): 25 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with applicable rules of any rules-writing agency certified by the American Lumber Standard Committee's (ALSC) Board of Review. Grade lumber by an agency certified by the ALSC's Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of inspection agency, indicating grade, species, moisture content at time of surfacing, and mill.
2. For exposed lumber, mark grade stamp on end or back of each piece or omit grade stamp and provide certificates of grade compliance issued by inspection agency.

B. Softwood Plywood: DOC PS 1.

C. Hardboard: ANSI A135.4.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Water-Repellent Preservative Treatment by Nonpressure Process: AWPA N1; dip, spray, flood, or vacuum-pressure treatment.

1. Preservative Chemicals: 3-iodo-2-propynyl butyl carbamate (IPBC), combined with an insecticide containing chloropyrifos (CPF)
2. Use chemical formulations that do not bleed through or otherwise adversely affect finishes. Do not use colorants in solution to distinguish treated material from untreated material.

B. Preservative Treatment by Pressure Process: AWPA U1; Use Category [UC3a] [UC3b].

1. Kiln dry lumber and plywood after treatment to a maximum moisture content of 19 and 18 percent, respectively.
2. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
3. For exposed items indicated to receive transparent finish, do not use chemical formulations that contain colorants or that bleed through or otherwise adversely affect finishes.
4. Do not use material that is warped or does not comply with requirements for untreated material.
5. Mark lumber with treatment-quality mark of an inspection agency approved by the ALSC’s Board of Review.

 a. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece or omit marking and provide certificates of treatment compliance issued by inspection agency.

6. Mark plywood with appropriate classification marking of an inspection agency acceptable to authorities having jurisdiction.

 a. For exposed plywood indicated to receive a stained or natural finish, mark back of each piece.

7. Application: All exterior lumber and plywood.

2.3 INTERIOR AND EXTERIOR TRIM

A. Lumber Trim for [Semitransparent-Stained Finish]:

 1. Species and Grade: Southern pine; pressure-preservative treated; SPIB C & Btr.
 2. Maximum Moisture Content: 15 percent with at least 85 percent of shipment at 12 percent or less.
 3. Finger Jointing: Not allowed
 4. Face Surface: Surfaced (smooth)

2.4 INTERIOR AND EXTERIOR SOFFITS AND CEILINGS

A. Species and Grade: Spruce-pine-fir; NeLMA, NLGA, WCLIB, or WWPA 1 Common.

B. Pattern: V-edge, smooth-faced tongue and groove, actual face width (coverage) and thickness of 3-1/8 by 23/32 inch (79 by 18 mm)

2.5 MISCELLANEOUS MATERIALS

A. Fasteners for Exterior Finish Carpentry: Provide nails or screws, in sufficient length to penetrate not less than 1-1/2 inches (38 mm) into wood substrate.

 1. For face-fastening siding, provide ringed-shank siding nails or hot-dip galvanized-steel siding nails.
 2. For prefinished items, provide matching prefinished aluminum fasteners where face fastening is required.
 3. For pressure-preservative-treated wood, provide stainless steel fasteners.
 4. For applications not otherwise indicated, provide stainless steel fasteners.

B. Wood Glue: Waterproof resorcinol glue recommended by manufacturer for exterior carpentry use.

C. Adhesive for Cellular PVC Trim: Product recommended by trim manufacturer.
D. Flashing: Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim" for flashing materials installed in exterior finish carpentry.

E. Insect Screening for Soffit Vents: Stainless steel, 18-by-18-inch (1.4-by-1.4-mm) mesh.

F. Continuous Soffit Vents: Aluminum hat channel shape with perforations, 2 inches (51 mm) wide and in lengths not less than 96 inches (2438 mm).
 1. Net-Free Area: 6 sq. in./linear ft. (420 sq. cm/m)
 2. Finish: Mill finish.

G. Sealants: Latex, complying with ASTM C834 Type OP, Grade NF and applicable requirements in Section 079200 "Joint Sealants," and recommended by sealant and substrate manufacturers for intended application.

2.6 FABRICATION

A. Back out or kerf backs of standing and running trim wider than 5 inches (125 mm), except members with ends exposed in finished work.

B. Ease edges of lumber less than 1 inch (25 mm) in nominal thickness to 1/16-inch (1.5-mm) radius and edges of lumber 1 inch (25 mm) or more in nominal thickness to 1/8-inch (3-mm) radius.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine finish carpentry materials before installation. Reject materials that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.

B. Prime lumber and moldings to be painted, including both faces and edges, unless factory primed.
 1. Cut to required lengths and prime ends.
 2. Comply with requirements in Section 099113 "Exterior Painting."
3.3 INSTALLATION, GENERAL

A. Do not use materials that are unsound, warped, improperly treated or finished, inadequately seasoned, or too small to fabricate with proper jointing arrangements.

1. Do not use manufactured units with defective surfaces, sizes, or patterns.

B. Install exterior finish carpentry level, plumb, true, and aligned with adjacent materials.

1. Use concealed shims where necessary for alignment.
2. Scribe and cut exterior finish carpentry to fit adjoining work.
3. Refinish and seal cuts as recommended by manufacturer.
4. Install to tolerance of 1/8 inch in 96 inches (3 mm in 2438 mm) for level and plumb. Install adjoining exterior finish carpentry with 1/32-inch (0.8-mm) maximum offset for flush installation and 1/16-inch (1.5-mm) maximum offset for reveal installation.
5. Coordinate exterior finish carpentry with materials and systems in or adjacent to it.
6. Provide cutouts for mechanical and electrical items that penetrate exterior finish carpentry.

3.4 INSTALLATION OF STANDING AND RUNNING TRIM

A. Install flat-grain lumber with bark side exposed to weather.

B. Install cellular PVC trim to comply with manufacturer's written instructions.

C. Install trim with minimum number of joints as is practical, using full-length pieces from maximum lengths of lumber available. Do not use pieces less than 24 inches (610 mm) long, except where necessary.

1. Use scarf joints for end-to-end joints.
2. Stagger end joints in adjacent and related members.

D. Fit exterior joints to exclude water.

1. Cope at returns and miter at corners to produce tight-fitting joints, with full-surface contact throughout length of joint.
2. Plane backs of casings to provide uniform thickness across joints, where necessary for alignment.

E. Where face fastening is unavoidable, countersink fasteners, fill surface flush, and sand unless otherwise indicated.

3.5 ADJUSTING

A. Replace exterior finish carpentry that is damaged or does not comply with requirements.

1. Exterior finish carpentry may be repaired or refinished if work complies with requirements and shows no evidence of repair or refinishing.
B. Adjust joinery for uniform appearance.

3.6 CLEANING
A. Clean exterior finish carpentry on exposed and semiexposed surfaces.
B. Touch up factory-applied finishes to restore damaged or soiled areas.

3.7 PROTECTION
A. Protect installed products from damage from weather and other causes during construction.
B. Remove and replace finish carpentry materials that are wet, moisture damaged, and mold damaged.
 1. Indications that materials are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that materials are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 062013
SECTION 071326 - SELF-ADHERING SHEET WATERPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Modified bituminous sheet waterproofing for underlayment of window and door opening perimeters and tops of parapet caps, transitions of metal flashings, barriers being metal fascias and horizontal conditions of wall cavities.

B. Related Requirements:

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
1. Include construction details, material descriptions, and tested physical and performance properties of waterproofing.
2. Include manufacturer's written instructions for evaluating, preparing, and treating substrate.

B. Shop Drawings: Show locations and extent of waterproofing and details of substrate joints and cracks, sheet flashings, penetrations, inside and outside corners, tie-ins with adjoining waterproofing, and other termination conditions.
1. Include setting drawings showing layout, sizes, sections, profiles, and joint details of pedestal-supported concrete pavers.

C. Samples: For each exposed product and for each color and texture specified, including the following products:
1. 8-by-8-inch square of waterproofing and flashing sheet.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
B. Field quality-control reports.
C. Sample Warranties: For special warranties.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by waterproofing manufacturer.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Apply waterproofing within the range of ambient and substrate temperatures recommended by waterproofing manufacturer. Do not apply waterproofing to a damp or wet substrate.

1. Do not apply waterproofing in snow, rain, fog, or mist.

B. Maintain adequate ventilation during preparation and application of waterproofing materials.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer's standard materials-only warranty in which manufacturer agrees to furnish replacement waterproofing material for waterproofing that does not comply with requirements or that fails to remain watertight within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

B. Installer's Special Warranty: Specified form, signed by Installer, covering Work of this Section, for warranty period of two years.

1. Warranty includes removing and reinstalling protection board, drainage panels, insulation, pedestals, and pavers on plaza decks.

C. Costs incurred for multiple inspections required by manufacturer, to provide specified warranty, shall be included in the bid price of this Work.

PART 2 - PRODUCTS

2.1 MODIFIED BITUMINOUS SHEET WATERPROOFING

A. Modified Bituminous Sheet: Minimum 60-mil nominal thickness, self-adhering sheet consisting of 56 mils of rubberized asphalt laminated on one side to a 4-mil-thick, polyethylene-film reinforcement, and with release liner on adhesive side.

1. Products: Subject to compliance with requirements, provide one of the following:

 a. Carlisle Coatings & Waterproofing Inc; CCW MiraDRI 860/861.
 b. Grace Construction Products; W.R. Grace & Co. -- Conn; Bituthene 3000/Low Temperature.
 c. Henry Company; Blueskin WP 100/200.
 d. Meadows, W.R.,Inc; SealTight Mel-Rol.
 e. Polyguard Products, Inc; Polyguard 650.
 f. Tamko Building Products, Inc; TW-60.
2. Physical Properties:
 a. Tensile Strength, Membrane: 250 psi minimum; ASTM D 412, Die C, modified.
 b. Ultimate Elongation: 300 percent minimum; ASTM D 412, Die C, modified.
 d. Crack Cycling: Unaffected after 100 cycles of 1/8-inch movement; ASTM C 836.
 e. Puncture Resistance: 40 lbf minimum; ASTM E 154.
 f. Water Absorption: 0.2 percent weight-gain maximum after 48-hour immersion at 70 deg F; ASTM D 570.
 g. Water Vapor Permeance: 0.05 perms maximum; ASTM E 96/E 96M, Water Method.
 h. Hydrostatic-Head Resistance: 200 feet minimum; ASTM D 5385.

2.2 AUXILIARY MATERIALS

A. General: Furnish auxiliary materials recommended by waterproofing manufacturer for intended use and compatible with sheet waterproofing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the waterproofing.

1. Verify that concrete has cured and aged for minimum time period recommended in writing by waterproofing manufacturer.
2. Verify that substrate is visibly dry and within the moisture limits recommended in writing by manufacturer. Test for capillary moisture by plastic sheet method according to ASTM D 4263.
3. Verify that compacted subgrade is dry, smooth, sound, and ready to receive waterproofing sheet.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

A. Clean, prepare, and treat substrates according to manufacturer's written instructions. Provide clean, dust-free, and dry substrates for waterproofing application.

1. Install sheet strips of width according to manufacturer's written instructions and center over treated construction and contraction joints and cracks exceeding a width of 1/16 inch.
B. Corners: Prepare, prime, and treat inside and outside corners according to ASTM D 6135.

C. Prepare, treat, and seal vertical and horizontal surfaces at terminations and penetrations through waterproofing and at drains and protrusions according to ASTM D 6135.

3.3 MODIFIED BITUMINOUS SHEET-WATERPROOFING APPLICATION

A. Install modified bituminous sheets according to waterproofing manufacturer's written instructions and recommendations in ASTM D 6135.

B. Horizontal Application: Apply sheets from low to high points of decks to ensure that laps shed water.

C. Install sheet-waterproofing and auxiliary materials to tie into adjacent waterproofing.

D. Repair tears, voids, and lapped seams in waterproofing not complying with requirements. Slit and flatten fishmouths and blisters. Patch with sheet waterproofing extending 6 inches beyond repaired areas in all directions.

E. Vertical Application: Make all installations lap to shed water.

3.4 PROTECTION, REPAIR, AND CLEANING

A. Do not permit foot or vehicular traffic on unprotected membrane.

B. Protect waterproofing from damage and wear during remainder of construction period.

C. Protect installed membrane from damage due to UV light, harmful weather exposures, physical abuse, and other causes. Provide temporary coverings where installation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

D. Correct deficiencies in or remove waterproofing that does not comply with requirements; repair substrates, reapply waterproofing, and repair sheet flashings.

E. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 071326
SECTION 071900 - WATER REPELLENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes penetrating water-repellent treatments for the following vertical and horizontal surfaces:

1. CMU.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include manufacturer's standard colors.
 2. Include manufacturer's recommended number of coats for each type of substrate and spreading rate for each separate coat.
 3. Include printout of current "MPI Approved Products List" for each product category specified in Part 2 that specifies water repellents approved by MPI, with the proposed product highlighted.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Applicator.
B. Product Certificates: For each type of water repellent.
C. Preconstruction Test Reports: For water-repellent-treated substrates.
D. Field quality-control reports.
E. Sample Warranty: For special warranty.

1.5 QUALITY ASSURANCE

A. Applicator Qualifications: An employer of workers trained and approved by manufacturer.
B. MPI Standards: Comply with MPI standards indicated and provide water repellents listed in its "MPI Approved Products List."
C. Mockups: Apply water repellent to each type of substrate required.
 1. Final approval by Architect of water-repellent application will be from test applications.

1.6 FIELD CONDITIONS
A. Limitations: Proceed with application only when the following existing and forecasted weather and substrate conditions permit water repellents to be applied according to manufacturers' written instructions and warranty requirements:
 1. Concrete surfaces and mortar have cured for not less than 28 days.
 2. Building has been closed in for not less than 30 days before treating wall assemblies.
 3. Ambient temperature is above 40 deg F and below 100 deg F and will remain so for 24 hours.
 4. Substrate is not frozen and substrate-surface temperature is above 40 deg F and below 100 deg F.
 5. Rain or snow is not predicted within 24 hours.
 6. Not less than 24 hours have passed since surfaces were last wet.
 7. Windy conditions do not exist that might cause water repellent to be blown onto vegetation or surfaces not intended to be treated.

1.7 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer and Applicator agree(s) to repair or replace materials that fail to maintain water repellency specified in "Performance Requirements" Article within specified warranty period.
 1. Warranty Period: Ten years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Water Absorption: Minimum 80 percent reduction of water absorption after 24 hours for treated compared to untreated specimens when tested according to the following:
 2. Natural Stone: ASTM C 97/C 97M.

B. Performance: Water repellents shall meet performance requirements indicated without failure due to defective manufacture, fabrication, or installation.
 1. Water Repellents: Comply with performance requirements specified, as determined by on manufacturer's standard substrate assemblies representing those indicated for this Project

C. Durability: Maximum 5 percent loss of water-repellent performance after 2500 hours of weathering according to ASTM G 154 compared to water-repellent-treated specimens before weathering.
2.2 FILM-FORMING WATER REPELLENTS

A. Silicone-Resin Sealer, Film-Forming Water Repellent: Clear, polymerized, silicone-resin water repellent for dense substrates; in a solvent- or waterborne solution containing not less than 3 and up to 7 percent solids by weight; and with 400 g/L or less of VOCs.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements and conditions affecting performance of the Work.

1. Verify that surfaces are clean and dry according to water-repellent manufacturer's requirements. Check moisture content in three representative locations by method recommended by manufacturer.
2. Verify that there is no efflorescence or other removable residues that would be trapped beneath the application of water repellent.
3. Verify that required repairs are complete, cured, and dry before applying water repellent.

B. Test pH level according to water-repellent manufacturer's written instructions to ensure chemical bond to silica-containing or siliceous minerals.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. New Construction and Repairs: Allow concrete and other cementitious materials to age before application of water repellent, according to repellent manufacturer's written instructions.

B. Cleaning: Before application of water repellent, clean substrate of substances that could impair penetration or performance of product according to water-repellent manufacturer's written instructions and as follows:

1. Cast Stone: Remove oil, curing compounds, laitance, and other substances that inhibit penetration or performance of water repellents according to ASTM E 1857.

C. Protect adjoining work, including mortar and sealant bond surfaces, from spillage or blow-over of water repellent. Cover adjoining and nearby surfaces of aluminum and glass if there is the possibility of water repellent being deposited on surfaces. Cover live vegetation.
D. Coordination with Mortar Joints: Do not apply water repellent until pointing mortar for joints adjacent to surfaces receiving water-repellent treatment has been installed and cured.

E. Coordination with Sealant Joints: Do not apply water repellent until sealants for joints adjacent to surfaces receiving water-repellent treatment have been installed and cured.

1. Water-repellent work may precede sealant application only if sealant adhesion and compatibility have been tested and verified using substrate, water repellent, and sealant materials identical to those required.

3.3 APPLICATION

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect the substrate before application of water repellent and to instruct Applicator on the product and application method to be used.

B. Apply a heavy-saturation coating of water repellent, on surfaces indicated for treatment, using roller or brush to the point of saturation. Apply coating in dual passes of uniform, overlapping strokes. Remove excess material; do not allow material to puddle beyond saturation.

1. Comply with manufacturer's written instructions for application procedure unless otherwise indicated.
2. Do not install during inclement weather.
3. Do not install when precipitation appears imminent – application should be completed at least twelve hours before onset of precipitation.
4. Do not install when frozen moisture is present in the substrate.
5. Apply material using high-volume, low pressure spray equipment (between 40-60 psi), with a fan tip and solvent resistant fittings. Roller or brush of natural bristle may be used in areas where spray application is not appropriate. Do not use Airless spray equipment.
6. Apply from top to bottom in a saturating flood coat obtaining a 4 to 6 inch rundown of product from the point where the spray makes contact with the surface.
7. Continue down the building being sure to cover the rundown with an equal volume of product. Avoid excessive overlapping.
8. Denser substrates may require back rolling after product is applied to smooth out any rundown lines.
9. Brush any excess product that may accumulate on ledges and other areas.
10. On horizontal surfaces, the water repellent must not be allowed to puddle or pond.
11. Over-application may result in product curing on the surface.
12. Product not absorbed within 5-10 minutes must be immediately wiped up.
13. PWS-15 Super Strength is not recommended for use on horizontal surfaces.
14. Cures for foot traffic in 24 hrs. – vehicular traffic in 72 hrs.
15. Use only as supplied – do not thin or dilute.
16. PWS-15 Super must be used same day as opening.

C. Apply a second saturation coating, repeating first application. Comply with manufacturer's written instructions for limitations on drying time between coats and after rainstorm wetting of surfaces between coats. Consult manufacturer's technical representative if written instructions are not applicable to Project conditions.
3.4 CLEANING

A. Immediately clean water repellent from adjoining surfaces and surfaces soiled or damaged by water-repellent application as work progresses. Correct damage to work of other trades caused by water-repellent application, as approved by Architect.

B. Comply with manufacturer's written cleaning instructions.

END OF SECTION 071900
SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Polyisocyanurate foam-plastic board.

B. Related Requirements:
 1. 074113.16 Standing Seam Metal Roof Panels

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each product, for tests performed by a qualified testing agency.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

PART 2 - PRODUCTS

2.1 INSULATION BOARD

A. Exterior Insulation: Glass-fiber-reinforced enhanced polyisocyanurate foam core sheathing faced with nominal 4 mil embossed blue acrylic-coated aluminum on one side and 1.25 mil embossed aluminum on the other side, complying with ASTM C1289 and meeting the following physical properties:
 1. ASTM C1289 Type 1, Class 2.
3. Aged Thermal Resistance (ASTM C518, measured at Mean Temp of 75F): R-6.5 at 1 inch of thickness with 15 year thermal warranty.
6. Water Vapor Permeance (ASTM E96): <0.03 perms.
7. Maximum Use Temperature: 250 degrees F.

B. Acceptable Products: The Dow Chemical Company “THERMAX™ Sheathing Exterior Insulation.”

1. Panel Size: 4'-0” wide x 8'-0” long, shiplap panels.
2. Scheduled Thickness and Stabilized R-Value:
 a. Provide 2-layers at R-30.6 at Roof Assembly.

2.2 INSULATION FASTENERS

A. Adhesively Attached, Spindle-Type Anchors: Plate welded to projecting spindle; capable of holding insulation of specified thickness securely in position with self-locking washer in place.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. AGM Industries, Inc.
 b. Gemco.
2. Plate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
3. Spindle: Copper-coated, low-carbon steel; fully annealed; 0.105 inch in diameter; length to suit depth of insulation.
4. Fasteners shall be required for each layer of insulation to attach to decking below. Meet requirements for wind design.

2.3 ACCESSORIES

A. Insulation for Miscellaneous Voids:

1. Glass-Fiber Insulation: ASTM C 764, Type II, loose fill; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E 84.

B. Adhesive for Bonding Insulation: Product compatible with insulation and air and water barrier materials, and with demonstrated capability to bond insulation securely to substrates without damaging insulation and substrates.

C. Provide manufacturer’s approved sealant for sealing the joints of the insulation. Flashing tapes are not acceptable for sealing joints.
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and applications.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.

C. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

E. Coordinate installing roofing system components so insulation is not exposed to precipitation or left exposed at end of workday.

F. Comply with roofing system and roof insulation manufacturer's written instructions for installing roof insulation.

G. Installation Over Wood Decking:

1. Mechanically fasten slip sheet to roof deck using mechanical fasteners specifically designed and sized for fastening slip sheet to wood decks.
 a. Fasten slip sheet according to requirements in SPRI's Directory of Roof Assemblies for specified Wind Uplift Load Capacity.
 b. Fasten slip sheet to resist specified uplift pressure at corners, perimeter, and field of roof.

2. Install base layer of insulation with joints staggered not less than 24 inches (610 mm) in adjacent rows.
 a. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 b. Make joints between adjacent insulation boards not more than 1/4 inch (6 mm) in width.
 c. At internal roof drains, slope insulation to create a square drain sump with each side equal to the diameter of the drain bowl plus 24 inches (610 mm).

1) Trim insulation so that water flow is unrestricted.
d. Fill gaps exceeding 1/4 inch (6 mm) with insulation.

e. Cut and fit insulation within 1/4 inch (6 mm) of nailers, projections, and penetrations.

f. Loosely lay base layer of insulation units over substrate.

3. Mechanically attach base layer of insulation using mechanical fasteners specifically designed and sized for fastening specified board-type roof insulation to wood decks.

a. Fasten insulation according to requirements in SPRI's Directory of Roof Assemblies for specified Wind Uplift Load Capacity.

b. Fasten insulation to resist specified uplift pressure at corners, perimeter, and field of roof.

4. Install upper layers of insulation with joints of each layer offset not less than 12 inches (305 mm) from previous layer of insulation.

a. Staggered end joints within each layer not less than 24 inches (610 mm) in adjacent rows.

b. Install with long joints continuous and with end joints staggered not less than 12 inches (305 mm) in adjacent rows.

c. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.

d. Make joints between adjacent insulation boards not more than 1/4 inch (6 mm) in width.

e. At internal roof drains, slope insulation to create a square drain sump with each side equal to the diameter of the drain bowl plus 24 inches (610 mm).

1) Trim insulation so that water flow is unrestricted.

f. Fill gaps exceeding 1/4 inch (6 mm) with insulation.

g. Cut and fit insulation within 1/4 inch (6 mm) of nailers, projections, and penetrations.

h. Loosely lay each layer of insulation units over substrate.

i. Adhere each layer of insulation to substrate using adhesive according to SPRI's Directory of Roof Assemblies listed roof assembly requirements for specified Wind Uplift Load Capacity and FM Global Property Loss Prevention Data Sheet 1-29, as follows:

1) Set each layer of insulation in a solid mopping of hot roofing asphalt, applied within plus or minus 25 deg F (14 deg C) of equiviscous temperature.

2) Set each layer of insulation in ribbons of bead-applied insulation adhesive, firmly pressing and maintaining insulation in place.

3) Set each layer of insulation in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3.3 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse
and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100
SECTION 072726 - FLUID-APPLIED MEMBRANE AIR BARRIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Vapor-retarding, fluid-applied air barriers.

B. Related Requirements:

1. Section 061600 "Sheathing" for wall sheathings and wall sheathing joint-and-penetration treatments.

1.3 DEFINITIONS

A. Air-Barrier Material: A primary element that provides a continuous barrier to the movement of air.

B. Air-Barrier Accessory: A transitional component of the air barrier that provides continuity.

C. Air-Barrier Assembly: The collection of air-barrier materials and accessories applied to an opaque wall, including joints and junctions to abutting construction, to control air movement through the wall.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include manufacturer's written instructions for evaluating, preparing, and treating each substrate; technical data; dry film thickness; and tested physical and performance properties of products.

B. Shop Drawings: For air-barrier assemblies.

1. Show locations and extent of air-barrier materials, accessories, and assemblies specific to Project conditions.
2. Include details for substrate joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.
3. Include details of interfaces with other materials that form part of air barrier.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Certificates: From air-barrier manufacturer, certifying compatibility of air barriers and accessory materials with Project materials that connect to or that come in contact with the barrier.

C. Product Test Reports: For each air-barrier assembly, for tests performed by a qualified testing agency.

D. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove and replace liquid materials that cannot be applied within their stated shelf life.

B. Protect stored materials from direct sunlight.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended in writing by air-barrier manufacturer.

1. Protect substrates from environmental conditions that affect air-barrier performance.

2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Source Limitations: Obtain primary air-barrier materials and air-barrier accessories from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Air-Barrier Performance: Air-barrier assembly and seals with adjacent construction shall be capable of performing as a continuous air barrier. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, tie-ins to installed waterproofing, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.
B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft., when tested according to ASTM E 2357.

2.3 LOW-BUILD AIR BARRIERS, VAPOR RETARDING

A. Low-Build, Vapor-Retarding Air Barrier: Synthetic polymer material with an installed dry film thickness, according to manufacturer's written instructions, of 6 to 15 mils over smooth, void-free substrates.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Polyguard Products, Inc.
 b. Sto Corp.
 c. TK Products.

2. Physical and Performance Properties:

 a. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft. pressure difference; ASTM E 2178.
 b. Vapor Permeance: Maximum 0.1 perm; ASTM E 96/E 96M, Desiccant Method.
 c. Ultimate Elongation: Minimum 350 percent; ASTM D 412, Die C.
 d. Adhesion to Substrate: Minimum 16 lbf/sq. in. when tested according to ASTM D 4541.
 e. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
 f. UV Resistance: Can be exposed to sunlight for 90 days according to manufacturer's written instructions.

2.4 ACCESSORY MATERIALS

A. Requirement: Provide primers, transition strips, termination strips, joint reinforcing fabric and strips, joint sealants, counterflashign strips, flashing sheets and metal termination bars, termination mastic, substrate patching materials, adhesives, tapes, foam sealants, lap sealants, and other accessory materials that are recommended in writing by air-barrier manufacturer to produce a complete air-barrier assembly and that are compatible with primary air-barrier material and adjacent construction to which they may seal.

B. Primer: Liquid primer recommended for substrate by air-barrier material manufacturer.

C. Preformed Silicone Extrusion: Manufacturer's standard system consisting of cured low-modulus silicone extrusion, sized to fit opening widths, with a single-component, neutral-curing, Class 100/50 (low-modulus) silicone sealant for bonding extrusions to substrates.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
2. Verify that substrates have cured and aged for minimum time recommended in writing by air-barrier manufacturer.
3. Verify that substrates are visibly dry and free of moisture.
4. Verify that masonry joints are flush and completely filled with mortar.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

A. Clean, prepare, treat, fill, and seal substrate and joints and cracks in substrate according to manufacturer's written instructions and details. Provide clean, dust-free, and dry substrate for air-barrier application.

B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.

C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.

D. Remove fins, ridges, mortar, and other projections and fill honeycomb, aggregate pockets, holes, and other voids in concrete with substrate-patching material.

E. Remove excess mortar from masonry ties, shelf angles, and other obstructions.

F. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.

G. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.

H. Bridge isolation joints and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with air-barrier accessory material that accommodates joint movement according to manufacturer's written instructions and details.

3.3 ACCESSORIES INSTALLATION

A. Install accessory materials according to air-barrier manufacturer's written instructions and details to form a seal with adjacent construction and ensure continuity of air and water barrier.
1. Coordinate the installation of air barrier with installation of roofing membrane and base flashing to ensure continuity of air barrier with roofing membrane.
2. Install transition strip on roofing membrane or base flashing so that a minimum of 3 inches of coverage is achieved over each substrate.
3. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
4. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.

B. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.

C. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.

D. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.

E. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply transition strip so that a minimum of 3 inches of coverage is achieved over each substrate. Maintain 3 inches of full contact over firm bearing to perimeter frames, with not less than 1 inch of full contact.

 1. Transition Strip: Roll firmly to enhance adhesion.

F. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.

G. Seal strips and transition strips around masonry reinforcing or ties and penetrations with termination mastic.

H. Seal top of through-wall flashings to air barrier with an additional 6-inch-wide, transition strip.

I. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.

J. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches beyond repaired areas in strip direction.

3.4 PRIMARY AIR-BARRIER MATERIAL INSTALLATION

A. Apply air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer's written instructions and details. Apply air-barrier material within manufacturer's recommended application temperature ranges.
1. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
2. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.
3. Where multiple prime coats are needed to achieve required bond, allow adequate drying time between coats.

B. Low-Build Air Barriers: Apply continuous unbroken air-barrier material to substrates according to the following thickness. Apply an increased thickness of air-barrier material in full contact around protrusions such as masonry ties.

1. Vapor-Retarding, Low-Build Air Barrier: Total dry film thickness [as recommended in writing by manufacturer to comply with performance requirements not less than 6 mils, applied in one or more equal coats. Apply additional material as needed to achieve void- and pinhole-free surface.

C. Do not cover air barrier until it has been inspected.

D. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.5 FIELD QUALITY CONTROL

A. Inspections: Air-barrier materials, accessories, and installation are subject to inspection for compliance with requirements. Inspections will include the following:

1. Continuity of air-barrier system has been achieved throughout the building envelope with no gaps or holes.
2. Air-barrier dry film thickness.
3. Continuous structural support of air-barrier system has been provided.
4. Masonry and concrete surfaces are smooth, clean, and free of cavities, protrusions, and mortar droppings.
5. Site conditions for application temperature and dryness of substrates have been maintained.
6. Maximum exposure time of materials to UV deterioration has not been exceeded.
7. Surfaces have been primed, if applicable.
8. Laps in strips and transition strips have complied with minimum requirements and have been shingled in the correct direction (or mastic has been applied on exposed edges), with no fishmouths.
9. Termination mastic has been applied on cut edges.
10. Strips and transition strips have been firmly adhered to substrate.
11. Compatible materials have been used.
12. Transitions at changes in direction and structural support at gaps have been provided.
13. Connections between assemblies (air-barrier and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.
14. All penetrations have been sealed.
B. Air barriers will be considered defective if they do not pass inspections.
 1. Apply additional air-barrier material, according to manufacturer's written instructions, where inspection results indicate insufficient thickness.
 2. Remove and replace deficient air-barrier components for retesting as specified above.
C. Repair damage to air barriers caused by testing; follow manufacturer's written instructions.
D. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer's written instructions.
 1. Protect air barrier from exposure to UV light and harmful weather exposure as recommended in writing by manufacturer. If exposed to these conditions for longer than recommended, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed materials according to air-barrier manufacturer's written instructions.
 2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.
B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended in writing by manufacturer of affected construction.
C. Remove masking materials after installation.

END OF SECTION 072726
SECTION 074113.16 - STANDING-SEAM METAL ROOF PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes standing-seam metal roof panels.

B. Related Sections:
 1. Section 076200 Sheet Metal Flashing And Trim
 2. Section 077253 Snow Guards
 3. Section 071326 Self-Adhering Sheet Waterproofing

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

B. Shop Drawings:
 1. Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
 2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches.

C. Samples for Initial Selection: For each type of metal panel indicated with factory-applied color finishes.
 1. Include similar Samples of trim and accessories involving color selection.

D. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below.
 1. Metal Panels: 12 inches long by actual panel width. Include clips, fasteners, closures, and other metal panel accessories.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For each product, for tests performed by a qualified testing agency.
C. Field quality-control reports.

D. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For metal panels to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. UL-Certified, Portable Roll-Forming Equipment: UL-certified, portable roll-forming equipment capable of producing metal panels warranted by manufacturer to be the same as factory-formed products. Maintain UL certification of portable roll-forming equipment for duration of work.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.

B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.

C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.

D. Retain strippable protective covering on metal panels during installation.

1.8 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.9 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

B. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.
1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including rupturing, cracking, or puncturing.
 b. Deterioration of metals and other materials beyond normal weathering.
 2. Warranty Period: Two years from date of Substantial Completion.

B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Finish Warranty Period: 25 Insert number.

C. Special Weathertightness Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace standing-seam metal roof panel assemblies that fail to remain weathertight, including leaks, within specified warranty period.
 1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E 1646 or ASTM E 331 at the following test-pressure difference:
 1. Test-Pressure Difference: 2.86 lbf/sq. ft..

B. Hydrostatic-Head Resistance: No water penetration when tested according to ASTM E 2140.

C. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift-resistance class indicated.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 STANDING-SEAM METAL ROOF PANELS

A. General: Provide factory-formed metal roof panels designed to be installed by lapping and interconnecting raised side edges of adjacent panels with joint type indicated and mechanically
attaching panels to supports using concealed clips in side laps. Include clips, cleats, pressure plates, and accessories required for weathertight installation.

1. **Steel Panel Systems:** Unless more stringent requirements are indicated, comply with ASTM E 1514.

2. **Basis-of-Design Product:** Subject to compliance with requirements, provide product comparable to the following:
 a. AEP Span; a BlueScope Steel company.

2. **Panel Accessories:** Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, seals, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.

B. **Flash and Trim:** Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are
not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

C. Gutters: Formed from same material as roof panels, complete with end pieces, outlet tubes, and other special pieces as required.
1. Fabricate in minimum 96-inch- long sections, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." No gutter length should exceed 50 ft without an expansion joint. Expansion joints should be installed to comply with the SMACNA Architectural Sheet Metal Manual 5th Edition page 1.16 to 1.17 - Allowances For Gutter Expansion
2. Furnish gutter supports spaced a maximum of 36 inches o.c., fabricated from same metal as gutters. Provide wire ball strainers of compatible metal at outlets.
3. Finish gutters to match metal roof panels.

D. Downspouts: Formed from same material as roof panels. Fabricate in 10-foot- long sections, complete with formed elbows and offsets, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." Finish downspouts to match gutters.
1. Provide discharge blocks at non-paved surfaces at Downspout discharge points.

2.4 FABRICATION

A. General: Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.

B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

C. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
4. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
5. Conceal fasteners and expansion provisions. Exposed fasteners are not allowed on faces of accessories exposed to view.
6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal panel manufacturer for application, but not less than thickness of metal being secured.
2.5 FINISHES

A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

C. Steel Panels and Accessories:
 1. Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 1. Examine primary and secondary roof framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal roof panel manufacturer.
 2. Examine solid roof sheathing (decking) to verify that sheathing joints (decking) are supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.

B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C 754 and metal panel manufacturer's written recommendations.

3.3 METAL PANEL INSTALLATION

A. General: Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.
1. Shim or otherwise plumb substrates receiving metal panels.
2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistive barriers and flashings that will be concealed by metal panels are installed.
3. Install complete covering of Self-Adhering Sheet Waterproofing at substrate of metal roofing.
4. Install screw fasteners in predrilled holes.
5. Locate and space fastenings in uniform vertical and horizontal alignment.
6. Provide fasteners through insulation to deck below to achieve wind design requirements.
7. Install flashing and trim as metal panel work proceeds.
8. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
9. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.

B. Fasteners:
1. Steel Panels: Use stainless-steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.

C. Anchor Clips: Anchor metal roof panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

D. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.

E. Standing-Seam Metal Roof Panel Installation: Fasten metal roof panels to supports with concealed clips at each standing-seam joint at location, spacing, and with fasteners recommended in writing by manufacturer.
1. Install clips to supports with self-tapping fasteners.
2. Install pressure plates at locations indicated in manufacturer's written installation instructions.
3. Snap Joint: Nest standing seams and fasten together by interlocking and completely engaging factory-applied sealant.
4. Seamed Joint: Crimp standing seams with manufacturer-approved, motorized seamer tool so clip, metal roof panel, and factory-applied sealant are completely engaged.

F. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting and provide for thermal expansion. Coordinate installation with flashings and other components.
1. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal roof panel manufacturers; or, if not indicated, types recommended by metal roof panel manufacturer.

G. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.
1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet
metal flashing and trim to fit substrates and achieve waterproof and weather-resistant performance.

2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently weather resistant and waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with mastic sealant (concealed within joints).

H. Gutters: Join sections with riveted and soldered or lapped and sealed joints. Attach gutters to eave with gutter hangers spaced not more than 36 inches o.c. using manufacturer's standard fasteners. Provide end closures and seal watertight with sealant. Provide for thermal expansion.

I. Downspouts: Join sections with telescoping joints. Provide fasteners designed to hold downspouts securely 1 inch away from walls; locate fasteners at top and bottom and at approximately 60 inches o.c. in between.
 1. Provide elbows at base of downspouts to direct water away from building.
 2. Connect downspouts to underground drainage system indicated.

J. Roof Curbs: Install flashing around bases where they meet metal roof panels.

K. Pipe Flashing: Form flashing around pipe penetration and metal roof panels. Fasten and seal to metal roof panels as recommended by manufacturer.

3.4 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal panel units within installed tolerance of 1/4 inch in 20 feet on slope and location lines as indicated and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect metal roof panel installation, including accessories. Report results in writing.

B. Remove and replace applications of metal roof panels where tests and inspections indicate that they do not comply with specified requirements.

C. Additional tests and inspections, at Contractor's expense, are performed to determine compliance of replaced or additional work with specified requirements.

D. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On
completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

B. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074113.16
SECTION 076200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Manufactured through-wall flashing with snaplock receiver with counterflashing.
 2. Manufactured reglets with counterflashing.
 3. Formed roof-drainage sheet metal fabrications.
 5. Formed wall sheet metal fabrications.
 6. Formed equipment support flashing.
 7. Formed overhead-piping safety pans.

B. Related Requirements:
 1. Section 061000 "Rough Carpentry for wood nailers, curbs, and blocking.
 2. Section 077200 "Roof Accessories" for set-on-type curbs, equipment supports, roof hatches, vents, and other manufactured roof accessory units.

1.3 COORDINATION

A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.

B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each manufactured product and accessory.

B. Shop Drawings: For sheet metal flashing and trim.
 1. Include plans, elevations, sections, and attachment details.
2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled work.
3. Include identification of material, thickness, weight, and finish for each item and location in Project.
4. Include details for forming, including profiles, shapes, seams, and dimensions.
5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
6. Include details of termination points and assemblies.
7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
8. Include details of roof-penetration flashing.
9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, and counterflashings as applicable.
10. Include details of special conditions.
11. Include details of connections to adjoining work.
12. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches.

C. Samples for Verification: For each type of exposed finish.

1. Sheet Metal Flashing: 12 inches long by actual width of unit, including finished seam and in required profile. Include fasteners, cleats, clips, closures, and other attachments.
2. Trim, Metal Closures, Expansion Joints, Joint Intersections, and Miscellaneous Fabrications: 12 inches long and in required profile. Include fasteners and other exposed accessories.
3. Unit-Type Accessories and Miscellaneous Materials: Full-size Sample.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

B. Product Test Reports: For each product, for tests performed by a qualified testing agency.

C. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim, similar to that required for this Project and whose products have a record of successful in-service performance.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage. Store sheet metal flashing and trim materials away from uncured concrete and masonry.

B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.9 WARRANTY

A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General: Sheet metal flashing and trim assemblies shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.

B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA's "The NRCA Roofing Manual" and SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.

C. SPRI Wind Design Standard: Manufacture and install copings and roof edge flashings tested according to SPRI ES-1 and capable of resisting the following design pressure:

 1. Design Pressure: As indicated on Drawings.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.
2.2 SHEET METALS

A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.

B. Metallic-Coated Steel Sheet: Provide zinc-coated (galvanized) steel sheet according to ASTM A 653/A 653M, G90 coating designation; prepainted by coil-coating process to comply with ASTM A 755/A 755M.

1. Surface: Smooth, flat.
2. Exposed Coil-Coated Finish:
 a. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

3. Color: Match Architect's sample as selected for gutter and metal roof panel where adjacencies are installed.
4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil.

2.3 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, solder, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal [or manufactured item] unless otherwise indicated.

B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal.

1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
 b. Blind Fasteners: High-strength aluminum or stainless-steel rivets suitable for metal being fastened.
 c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.

2. Fasteners for Zinc-Coated (Galvanized) Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.

C. Solder:

1. For Zinc-Coated (Galvanized) Steel: ASTM B 32, Grade Sn50, 50 percent tin and 50 percent lead or Grade Sn60, 60 percent tin and 40 percent lead.
D. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch wide and 1/8 inch thick.

E. Elastomeric Sealant: ASTM C 920, elastomeric polyurethane polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

F. Bituminous Coating: Cold-applied asphalt emulsion according to ASTM D 1187.

2.4 MANUFACTURED SHEET METAL FLASHING AND TRIM

A. Through-Wall, Ribbed, Sheet Metal Flashing: Manufacture through-wall sheet metal flashing for embedment in masonry, with ribs at 3-inch intervals along length of flashing to provide integral mortar bond. Manufacture through-wall flashing with snaplock receiver on exterior face to receive counterflashing.

B. Reglets: Units of type, material, and profile required, formed to provide secure interlocking of separate reglet and counterflashing pieces, and compatible with flashing indicated with factory-mitered and -welded corners and junctions.

2.5 FABRICATION, GENERAL

A. General: Custom fabricate sheet metal flashing and trim to comply with details shown and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required. Fabricate sheet metal flashing and trim in shop to greatest extent possible.

1. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.

2. Obtain field measurements for accurate fit before shop fabrication.

3. Form sheet metal flashing and trim to fit substrates without excessive oil canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.

4. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Fabrication Tolerances: Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet on slope and location lines indicated on Drawings and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.

1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with butyl sealant concealed within joints.

2. Use lapped expansion joints only where indicated on Drawings.
D. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal to provide for proper installation of elastomeric sealant according to cited sheet metal standard.

E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.

F. Seams: Fabricate nonmoving seams with flat-lock seams. Tin edges to be seamed, form seams, and solder.

G. Seams: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.

H. Do not use graphite pencils to mark metal surfaces.

2.6 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Copings: Fabricate in minimum 96-inch-long, but not exceeding 12-foot-long, sections. Fabricate joint plates of same thickness as copings. **Furnish with continuous cleats to support edge of external leg and interior leg.** Miter corners, fasten and seal Shop fabricate interior and exterior corners.

1. Coping Profile: As detailed and in accordance with SMACNA's "Architectural Sheet Metal Manual."
2. Joint Style: Butted with expansion space and 6-inch-wide, exposed cover plate.
3. Fabricate from the Following Materials:
 a. Galvanized Steel: 0.040 inch thick, prefinished.

B. Roof-to-Wall Transition and Fascia-Cap Transition: Fabricate from the following materials: Shop fabricate interior and exterior corners.

1. Galvanized Steel: 0.034 inch thick, prefinished.

C. Base Flashing: Fabricate from the following materials:

1. Galvanized Steel: 0.028 inch thick, prefinished.

D. Counterflashings: Fabricate from the following materials:

1. Galvanized Steel: 0.022 inch thick, prefinished.

E. Flashing Receivers: Fabricate from the following materials:

1. Galvanized Steel: 0.022 inch thick, prefinished.

F. Eave, Rake, Ridge, and Hip Flashing: Fabricate from the following materials:

1. Galvanized Steel: 0.022 inch thick, prefinished.
G. Counterflashing: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch thick, prefinished.

H. Flashing Receivers: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch thick, prefinished.

2.7 WALL SHEET METAL FABRICATIONS

A. Through-Wall Flashing: Fabricate continuous flashings in minimum 96-inch-long, but not exceeding 12-foot-long, sections, under copings, and at shelf angles. Fabricate discontinuous lintel, sill, and similar flashings to extend 8 inches beyond each side of wall openings; and form with 2-inch-high, end dams.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, solder, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 1. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
 2. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
 3. Space cleats continuously each side of coping.
 4. Install exposed sheet metal flashing and trim with limited oil canning, and free of buckling and tool marks.
 5. Torch cutting of sheet metal flashing and trim is not permitted.
 6. Do not use graphite pencils to mark metal surfaces.
B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.

1. Coat concealed side of sheet metal flashing and trim with bituminous coating where flashing and trim contact wood, ferrous metal, or cementitious construction.
2. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.

C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at maximum of 10 feet with no joints within 24 inches of corner or intersection.

1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with sealant concealed within joints.
2. Use lapped expansion joints only where indicated on Drawings.

D. Fasteners: Use fastener sizes that penetrate wood blocking or substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.

F. Seal joints as required for watertight construction.

1. Use sealant-filled joints unless otherwise indicated. Embed hooked flanges of joint members not less than 1 inch into sealant. Form joints to completely conceal sealant. When ambient temperature at time of installation is between 40 and 70 deg F, set joint members for 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures. Do not install sealant-type joints at temperatures below 40 deg F.
2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

3.3 ROOF FLASHING INSTALLATION

A. General: Install sheet metal flashing and trim to comply with performance requirements, sheet metal manufacturer's written installation instructions, and cited sheet metal standard. Provide concealed fasteners where possible, and set units true to line, levels, and slopes. Install work with laps, joints, and seams that are permanently watertight and weather resistant.

B. Roof Edge Flashing: Anchor to resist uplift and outward forces according to recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate at staggered 3-inch centers.

C. Copings: Anchor to resist uplift and outward forces according to recommendations in cited sheet metal standard unless otherwise indicated.

1. Interlock exterior and exterior bottom edge of coping with continuous cleat anchored to substrate at 24-inch centers.
D. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending minimum of 4 inches over base flashing. Install stainless-steel draw band and tighten.

E. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend counterflashing 4 inches over base flashing. Lap counterflashing joints minimum of 4 inches. Secure in waterproof manner by means of snap-in installation and sealant or lead wedges and sealant unless otherwise indicated.

F. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Seal with elastomeric sealant and clamp flashing to pipes that penetrate roof.

3.4 WALL FLASHING INSTALLATION

A. General: Install sheet metal wall flashing to intercept and exclude penetrating moisture according to cited sheet metal standard unless otherwise indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.

3.5 MISCELLANEOUS FLASHING INSTALLATION

A. Equipment Support Flashing: Coordinate installation of equipment support flashing with installation of roofing and equipment. Weld or seal flashing with elastomeric sealant to equipment support member.

B. Overhead-Piping Safety Pans: Suspend pans from structure above, independent of other overhead items such as equipment, piping, and conduit, unless otherwise indicated on Drawings. Pipe and install drain line to plumbing waste or drainage system.

3.6 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet on slope and location lines indicated on Drawings and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

B. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerances specified in MCA's "Guide Specification for Residential Metal Roofing."

3.7 CLEANING AND PROTECTION

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean off excess sealants.
C. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended by sheet metal flashing and trim manufacturer. Maintain sheet metal flashing and trim in clean condition during construction.

D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 076200
SECTION 077100 - ROOF SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Roof-edge specialties.
 2. Roof-edge drainage systems.
 3. Reglets and counterflashings.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for downspout guards and downspout boots.
 2. Section 061000 "Rough Carpentry" for wood nailers, curbs, and blocking.
 3. Section 076200 "Sheet Metal Flashing and Trim" for custom- and site-fabricated sheet metal flashing and trim.
 4. Section 077200 "Roof Accessories" for set-on-type curbs, equipment supports, roof hatches, vents, and other manufactured roof accessory units.
 5. Section 079200 "Joint Sealants" for field-applied sealants between roof specialties and adjacent materials.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: For roof specialties.
 1. Include plans, elevations, expansion-joint locations, keyed details, and attachments to other work. Distinguish between plant- and field-assembled work.
 2. Include details for expansion and contraction; locations of expansion joints, including direction of expansion and contraction.
 3. Indicate profile and pattern of seams and layout of fasteners, cleats, clips, and other attachments.
 4. Detail termination points and assemblies, including fixed points.
 5. Include details of special conditions.

C. Samples: For each type of roof specialty and for each color and texture specified.
1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer.

B. Product Certificates: For each type of roof specialty.

C. Sample Warranty: For manufacturer's special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing specialties to include in maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store roof specialties in contact with other materials that might cause staining, denting, or other surface damage. Store roof specialties away from uncured concrete and masonry.

B. Protect strippable protective covering on roof specialties from exposure to sunlight and high humidity, except to extent necessary for the period of roof-specialty installation.

1.7 FIELD CONDITIONS

A. Field Measurements: Verify profiles and tolerances of roof-specialty substrates by field measurements before fabrication, and indicate measurements on Shop Drawings.

B. Coordination: Coordinate roof specialties with flashing, trim, and construction of parapets, roof deck, roof and wall panels, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.8 WARRANTY

A. Special Warranty on Painted Finishes: Manufacturer agrees to repair finish or replace roof specialties that show evidence of deterioration of factory-applied finishes within specified warranty period.

1. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following:

 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 10 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Roof specialties shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.

B. SPRI Wind Design Standard: Manufacture and install roof-edge specialties tested according to SPRI ES-1 and capable of resisting the following design pressures:

1. Design Pressure: As indicated on Drawings.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, hole elongation, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Provide clips that resist rotation and avoid shear stress as a result of thermal movements. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 ROOF-EDGE DRAINAGE SYSTEMS

A. Gutters: Manufactured in uniform section lengths not exceeding 20 feet, with matching corner units, ends, outlet tubes, and other accessories. Elevate back edge at least 1 inch above front edge. Furnish flat-stock gutter straps, gutter brackets, expansion joints, and expansion-joint covers fabricated from same metal as gutters.

1. Zinc-Coated Steel: Nominal 0.034-inch thickness.
2. Gutter Profile: As indicated according to SMACNA's "Architectural Sheet Metal Manual."
4. Gutter Supports: Manufacturer's standard matching concealed conditions; supports as selected by Architect with finish matching the gutters.

B. Downspouts: Rectangular, as detailed complete with mitered elbows, manufactured from the following exposed metal. Furnish with metal hangers, from same material as downspouts, and anchors.

1. Zinc-Coated Steel: Nominal 0.034-inch thickness.

C. Conductor Heads: Manufactured conductor heads, each with flanged back and stiffened top edge, and of dimensions and shape indicated, complete with outlet tube that nests into upper end of downspout, exterior flange trim, and built-in overflow.

1. Zinc-Coated Steel: Nominal 0.028-inch thickness.

D. Zinc-Coated Steel Finish: Two-coat fluoropolymer.

2.3 REGLETS AND COUNTERFLASHINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Castle Metal Products.
2. Fry Reglet Corporation.
3. Heckmann Building Products, Inc.
4. Hickman Company, W. P.

B. Reglets: Manufactured units formed to provide secure interlocking of separate reglet and counterflashing pieces, from the following exposed metal:

1. Zinc-Coated Steel: Nominal 0.022-inch thickness.
2. Corners: Factory mitered and soldered.
3. Concrete Type, Embedded: Provide temporary closure tape to keep reglet free of concrete materials, special fasteners for attaching reglet to concrete forms, and guides to ensure alignment of reglet section ends.

C. Counterflashings: Manufactured units of heights to overlap top edges of base flashings by 4 inches and in lengths not exceeding 12 feet designed to snap into reglets and compress against base flashings with joints lapped, from the following exposed metal:

1. Zinc-Coated Steel: Nominal 0.028-inch thickness.

D. Accessories:

1. Flexible-Flashing Retainer: Provide resilient plastic or rubber accessory to secure flexible flashing in reglet where clearance does not permit use of standard metal counterflashing or where reglet is provided separate from metal counterflashing.
2. Counterflashing Wind-Restraint Clips: Provide clips to be installed before counterflashing to prevent wind uplift of counterflashing lower edge.

E. Zinc-Coated Steel Finish: Two-coat fluoropolymer.

2.4 MATERIALS

A. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, G90 coating designation.

B. Aluminum Sheet: ASTM B 209, alloy as standard with manufacturer for finish required, with temper to suit forming operations and performance required.

C. Aluminum Extrusions: ASTM B 221, alloy and temper recommended by manufacturer for type of use and finish indicated, finished as follows:

D. Stainless-Steel Sheet: ASTM A 240/A 240M or ASTM A 666, Type 304.

E. Copper Sheet: ASTM B 370, cold-rolled copper sheet, H00 or H01 temper.
2.5 MISCELLANEOUS MATERIALS

A. Fasteners: Manufacturer's recommended fasteners, suitable for application and designed to meet performance requirements. Furnish the following unless otherwise indicated:

1. Exposed Penetrating Fasteners: Gasketed screws with hex washer heads matching color of sheet metal.
2. Fasteners for Aluminum: Aluminum or Series 300 stainless steel.
3. Fasteners for Stainless-Steel Sheet: Series 300 stainless steel.
4. Fasteners for Zinc-Coated (Galvanized) Steel Sheet: Series 300 stainless steel or hot-dip zinc-coated steel according to ASTM A 153/A 153M or ASTM F 2329.

B. Elastomeric Sealant: ASTM C 920, sealant of type, grade, class, and use classifications required by roofing-specialty manufacturer for each application.

C. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type joints with limited movement.

2.6 FINISHES

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

D. Coil-Coated Galvanized-Steel Sheet Finishes:

1. High-Performance Organic Finish: Prepare, pretreat, and apply coating to exposed metal surfaces to comply with ASTM A 755/A 755M and coating and resin manufacturers' written instructions.
 a. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 b. Concealed Surface Finish: Apply pretreatment and manufacturer's standard acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.

B. Examine walls, roof edges, and parapets for suitable conditions for roof specialties.

C. Verify that substrate is sound, dry, smooth, clean, sloped for drainage where applicable, and securely anchored.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. General: Install roof specialties according to manufacturer’s written instructions. Anchor roof specialties securely in place, with provisions for thermal and structural movement. Use fasteners, solder, protective coatings, separators, underlayments, sealants, and other miscellaneous items as required to complete roof-specialty systems.

1. Install roof specialties level, plumb, true to line and elevation; with limited oil-canning and without warping, jogs in alignment, buckling, or tool marks.

2. Provide uniform, neat seams with minimum exposure of solder and sealant.

3. Install roof specialties to fit substrates and to result in weathertight performance. Verify shapes and dimensions of surfaces to be covered before manufacture.

4. Torch cutting of roof specialties is not permitted.

5. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.

1. Bed flanges in thick coat of asphalt roofing cement where required by manufacturers of roof specialties for waterproof performance.

D. Fastener Sizes: Use fasteners of sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Seal concealed joints with butyl sealant as required by roofing-specialty manufacturer.

F. Seal joints as required for weathertight construction. Place sealant to be completely concealed in joint. Do not install sealants at temperatures below 40 deg F.

G. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pre-tin edges of sheets to be soldered to a width of 1-1/2 inches; however, reduce pre-tinning where pre-tinned surface would show in completed Work. Tin edges of uncoated copper sheets using solder for copper. Do not use torches for soldering. Heat surfaces to receive solder and flow solder into joint. Fill joint completely. Completely remove flux and spatter from exposed surfaces.
3.3 ROOF-EDGE DRAINAGE-SYSTEM INSTALLATION

A. General: Install components to produce a complete roof-edge drainage system according to manufacturer's written instructions. Coordinate installation of roof perimeter flashing with installation of roof-edge drainage system.

B. Gutters: Join and seal gutter lengths. Allow for thermal expansion. Attach gutters to firmly anchored gutter supports spaced not more than 24 inches apart. Attach ends with rivets and seal with sealant to make watertight. Slope to downspouts.

1. Install gutter with expansion joints at locations indicated but not exceeding 50 feet apart. Install expansion-joint caps.

C. Downspouts: Join sections with manufacturer's standard telescoping joints. Provide hangers with fasteners designed to hold downspouts securely to walls and 1 inch away from walls; locate fasteners at top and bottom and at approximately 60 inches o.c.

1. Connect downspouts to underground drainage system indicated.

D. Conductor Heads: Anchor securely to wall.

3.4 REGLET AND COUNTERFLASHING INSTALLATION

A. General: Coordinate installation of reglets and counterflashings with installation of base flashings.

B. Embedded Concrete Reglets: See Structural documents for installation of reglets.

3.5 CLEANING AND PROTECTION

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean and neutralize flux materials. Clean off excess solder and sealants.

C. Remove temporary protective coverings and strippable films as roof specialties are installed. On completion of installation, clean finished surfaces, including removing unused fasteners, metal filings, pop rivet stems, and pieces of flashing. Maintain roof specialties in a clean condition during construction.

D. Replace roof specialties that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

END OF SECTION 077100
SECTION 077200 - ROOF ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Roof curbs.
 2. Equipment supports.
 3. Pipe and duct supports.
B. Related Sections:
 1. Section 055000 "Metal Fabrications" for metal vertical ladders, ships' ladders, and stairs for access to roof hatches.
 2. Section 076200 "Sheet Metal Flashing and Trim" for shop- and field-formed metal flashing, roof-drainage systems, roof expansion-joint covers, and miscellaneous sheet metal trim and accessories.

1.3 COORDINATION
A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and noncorrosive installation.
B. Coordinate dimensions with rough-in information or Shop Drawings of equipment to be supported.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of roof accessory.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
B. Shop Drawings: For roof accessories.
 1. Include plans, elevations, keyed details, and attachments to other work. Indicate dimensions, loadings, and special conditions. Distinguish between plant- and field-assembled work.
C. Samples: For each exposed product and for each color and texture specified, prepared on Samples of size to adequately show color.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Roof plans, drawn to scale, and coordinating penetrations and roof-mounted items. Show the following:

1. Size and location of roof accessories specified in this Section.
2. Method of attaching roof accessories to roof or building structure.
3. Other roof-mounted items including mechanical and electrical equipment, ductwork, piping, and conduit.
4. Required clearances.

B. Sample Warranties: For manufacturer's special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For roof accessories to include in operation and maintenance manuals.

1.7 WARRANTY

A. Special Warranty on Painted Finishes: Manufacturer's standard form in which manufacturer agrees to repair finishes or replace roof accessories that show evidence of deterioration of factory-applied finishes within specified warranty period.

1. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following:

 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Roof accessories shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.

B. Wind-Restraint Performance: As indicated on Drawings.
2.2 ROOF CURBS

A. Roof Curbs: Internally reinforced roof-curb units capable of supporting superimposed live and dead loads, including equipment loads and other construction indicated on Drawings, bearing continuously on roof structure, and capable of meeting performance requirements; with welded or mechanically fastened and sealed corner joints, straight sides, integral metal cant, stepped integral metal cant, raised the thickness of roof insulation, and integrally formed deck-mounting flange at perimeter bottom.

B. Size: Coordinate dimensions with roughing-in information or Shop Drawings of equipment to be supported.

C. Supported Load Capacity: As indicated on drawings.

D. Material: Zinc-coated (galvanized) steel sheet, 0.052 inch thick.
 1. Finish: Two-coat fluoropolymer.

2.3 PIPE AND DUCT SUPPORTS

A. Adjustable-Height Roller-Bearing Pipe Supports: Polycarbonate pipe stand base, pipe support, and roller housing, with stainless-steel threaded rod designed for adjusting support height, accommodating required diameter pipe or conduit; with provision for pipe retainer and with manufacturer's support pad or deck plate as recommended for penetration-free installation over roof membrane type; as required for quantity of pipe runs and sizes.

2.4 METAL MATERIALS

A. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, G90 coating designation.
 1. Exposed Coil-Coated Finish: Prepainted by the coil-coating process to comply with ASTM A 755/A 755M. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 a. Two-Coat Fluoropolymer Finish: AAMA 621. System consisting of primer and fluoropolymer color topcoat containing not less than 70 percent PVDF resin by weight.

B. Aluminum Extrusions and Tubes: ASTM B 221, manufacturer's standard alloy and temper for type of use, finished to match assembly where used; otherwise mill finished.

C. Stainless-Steel Sheet and Shapes: ASTM A 240/A 240M or ASTM A 666, Type 304.

D. Steel Shapes: ASTM A 36/A 36M, hot-dip galvanized according to ASTM A 123/A 123M unless otherwise indicated.

E. Steel Tube: ASTM A 500/A 500M, round tube.
2.5 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, protective coatings, sealants, and other miscellaneous items required by manufacturer for a complete installation.

B. Cellulosic-Fiber Board Insulation: ASTM C 208, Type II, Grade 1, thickness as indicated.

C. Glass-Fiber Board Insulation: ASTM C 726, nominal density of 3 lb/cu. ft., thermal resistivity of 4.3 deg F x h x sq. ft./Btu x in. at 75 deg F, thickness as indicated.

D. Polyisocyanurate Board Insulation: ASTM C 1289, thickness and thermal resistivity as indicated.

E. Wood Nailers: Softwood lumber, pressure treated with waterborne preservatives for aboveground use, acceptable to authorities having jurisdiction, containing no arsenic or chromium, and complying with AWPA C2; not less than 1-1/2 inches thick.

F. Elastomeric Sealant: ASTM C 920, as recommended by roof accessory manufacturer for installation indicated; low modulus; of type, grade, class, and use classifications required to seal joints and remain watertight.

G. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for expansion joints with limited movement.

2.6 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.

B. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.

C. Verify dimensions of roof openings for roof accessories.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. General: Install roof accessories according to manufacturer's written instructions.
 1. Install roof accessories level; plumb; true to line and elevation; and without warping, jogs in alignment, buckling, or tool marks.
 2. Anchor roof accessories securely in place so they are capable of resisting indicated loads.
 3. Use fasteners, separators, sealants, and other miscellaneous items as required to complete installation of roof accessories and fit them to substrates.
 4. Install roof accessories to resist exposure to weather without failing, rattling, leaking, or loosening of fasteners and seals.

B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.
 1. Underlayment: Where installing roof accessories directly on cementitious or wood substrates, install a course of underlayment and cover with manufacturer's recommended slip sheet.
 2. Bed flanges in thick coat of asphalt roofing cement where required by manufacturers of roof accessories for waterproof performance.

C. Roof Curb Installation: Install each roof curb so top surface is level.

D. Equipment Support Installation: Install equipment supports so top surfaces are level with each other.

E. Pipe Support Installation: Comply with MSS SP-58 and MSS SP-89. Install supports and attachments as required to properly support piping. Arrange for grouping of parallel runs of horizontal piping, and support together.
 1. Pipes of Various Sizes: Space supports for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.

F. Seal joints with elastomeric or butyl sealant as required by roof accessory manufacturer.

3.3 REPAIR AND CLEANING

A. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing according to ASTM A 780/A 780M.

B. Touch up factory-primed surfaces with compatible primer ready for field painting according to Section 099113 "Exterior Painting."

C. Clean exposed surfaces according to manufacturer's written instructions.

D. Clean off excess sealants.

E. Replace roof accessories that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

END OF SECTION 077200
SECTION 077253 - SNOW GUARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Rail-type, seam-mounted snow guards.

1.3 ACTION SUBMITTALS

A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for snow guards.

B. Shop Drawings: Include roof plans showing layouts and attachment details of snow guards.
 1. Include details of rail-type snow guards.
 2. Include calculation of number and location of snow guards based on snow load, roof slope, roof type, components, spacings, and finish.

C. Samples: Full-size unit - Base, bracket, and 12-inch- long rail.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each type of snow guard, for tests performed by manufacturer and witnessed by a qualified testing agency.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Performance Requirements: Provide snow guards that withstand exposure to weather and resist thermally induced movement without failure, rattling, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

B. Structural Performance:
2.2 RAIL-TYPE SNOW GUARDS

A. Seam-Mounted, Rail-Type Snow Guards:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Alpine SnowGuards; a division of Vermont Slate & Copper Services, Inc.

 b. LMCurbs.

 d. Snow Management Systems; a division of Contek, Inc.

 e. TRA-MAGE, Inc.

2. Description: Snow guard rails fabricated from metal pipes, bars, or extrusions, anchored to brackets and equipped with one rail with color-matching inserts of material and finish used for metal roofing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances, snow guard attachment, and other conditions affecting performance of the Work.

 1. Verify compatibility with and suitability of substrates including compatibility with existing finishes or primers.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean and prepare substrates for bonding snow guards.

B. Prime substrates according to snow guard manufacturer's written instructions.

3.3 INSTALLATION

A. Install snow guards according to manufacturer's written instructions. Space rows as recommended by manufacturer.

B. Attachment for Standing-Seam Metal Roofing:
1. Do not use fasteners that will penetrate metal roofing, or fastening methods that void metal roofing finish warranty.
2. Seam-Mounted, Rail-Type Snow Guards: Stainless-steel clamps attached to vertical ribs of standing-seam metal roof panels.

C. Schedule of Installations:
1. Provide along Standing Seam roof edges which are greater than 5’-0” above the next highest point of the adjacent roof or ground surface.

END OF SECTION 077253
SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Silicone joint sealants.
 2. Urethane joint sealants.
 3. Mildew-resistant joint sealants.
 4. Latex joint sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product.

B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.

C. Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Product Test Reports: For each kind of joint sealant, for tests performed by a qualified testing agency.

C. Preconstruction Laboratory Test Schedule: Include the following information for each joint sealant and substrate material to be tested:
 1. Joint-sealant location and designation.
 2. Manufacturer and product name.
 3. Type of substrate material.
 5. Number of samples required.
D. Preconstruction Laboratory Test Reports: From sealant manufacturer, indicating the following:

1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
2. Interpretation of test results and written recommendations for primers and substrate preparation are needed for adhesion.

E. Preconstruction Field-Adhesion-Test Reports: Indicate which sealants and joint preparation methods resulted in optimum adhesion to joint substrates based on testing specified in "Preconstruction Testing" Article.

F. Field-Adhesion-Test Reports: For each sealant application tested.

G. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Product Testing: Test joint sealants using a qualified testing agency.

1. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.

C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section. Color selections of sealants are made upon actual mock-ups constructed with actual selected materials for the project.

1.6 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

B. Contractor shall coordinate the sealants submitted and utilized on site, to limit the number of types and colors among all trades utilizing sealants.
1.7 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:

1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
2. Disintegration of joint substrates from causes exceeding design specifications.
3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

A. Silicone, S, NS, 50, NT: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.

1. Products: Subject to compliance with requirements, provide one of the following:

a. Dow Corning Corporation; 791.
b. GE Construction Sealants; SCS2000 SilPruf.
c. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 265 LTS.
d. Pecora Corporation; PCS.
2.3 URETHANE JOINT SEALANTS

A. Urethane, S, NS, 25, T, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Uses T and NT.

1. Products: Subject to compliance with requirements, provide one of the following:

2.4 MILDEW-RESISTANT JOINT SEALANTS

A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.

B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 786-M White.
 b. GE Construction Sealants; SCS1700 Sanitary.
 c. May National Associates, Inc., a subsidiary of Sika Corporation U.S.; Bondaflex Sil 100 WF.
 d. Soudal USA; RTV GP.
 e. Tremco Incorporated; Tremsil 200.

2.5 LATEX JOINT SEALANTS

A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. BASF Construction Chemicals, LLC, Building Systems; Sonolac.
 c. Pecora Corporation; AC-20.
 d. Sherwin-Williams Company (The); 850A.
 e. Tremco Incorporated; Tremflex 834.

2.6 JOINT-SEALANT BACKING

A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. W.R. Meadows Meadows, KOOL ROD.

B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.7 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
 b. Masonry.

3. Remove laitance and form-release agents from concrete.
4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 a. Metal.
 b. Glass.
 c. Glazed surfaces of ceramic tile.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of sealant backings.
 2. Do not stretch, twist, puncture, or tear sealant backings.
 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants at dissimilar material installations.
F. Install sealants using proven techniques that comply with the following and at the same time backings are installed:

1. Place sealants so they directly contact and fully wet joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

G. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.

1. Remove excess sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
3. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.
 a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 079200
SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes hollow-metal work.
 B. Related Requirements:
 1. Section 087100 "Door Hardware for door hardware for hollow-metal doors.

1.3 DEFINITIONS
 A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION
 A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, and finishes.
 B. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of anchorages, joints, field splices, and connections.
 7. Details of accessories.
 8. Details of moldings, removable stops, and glazing.
 9. Details of conduit and preparations for power, signal, and control systems.
C. Samples for Initial Selection: For units with factory-applied color finishes.

D. Samples for Verification:
 1. For each type of exposed finish required, prepared on Samples of not less than 3 by 5 inches.
 2. For "Doors" and "Frames" subparagraphs below, prepare Samples approximately 12 by 12 inches to demonstrate compliance with requirements for quality of materials and construction:
 a. Doors: Show vertical-edge, top, and bottom construction; core construction; and hinge and other applied hardware reinforcement. Include separate section showing glazing if applicable.
 b. Frames: Show profile, corner joint, floor and wall anchors, and silencers. Include separate section showing fixed hollow-metal panels and glazing if applicable.

E. Schedule: Provide a schedule of hollow-metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final Door Hardware Schedule.

1.6 QUALITY ASSURANCE

A. Energy Efficient Exterior Openings: Comply with minimum thermal ratings, based on ASTM C1363. Openings to be fabricated and tested as fully operable, thermal insulating door and frame assemblies.

 1. Thermal Performance (Exterior Openings): Per IECC 2015: Independent testing laboratory certification for exterior door assemblies being tested in accordance with ASTM C1363 and meet or exceed the following requirements:
 a. Door Assembly Operable U-Factor and R-Value Ratings: maximum U-Factor 0.60, minimum R-Value 1.66, including insulated door, thermal-break frame and threshold.

 2. Air Infiltration (Exterior Openings) Per IECC 2015: Independent testing laboratory certification for exterior door assemblies being tested to meet or exceed the following requirements:
 a. Rate of leakage of the door assembly shall not exceed 0.20 cfm per square foot of static differential air pressure as tested per AMA/WDMA/CSA 101/L.S.2/A440 or NFRC 400.

1.7 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each type of hollow-metal door and frame assembly, for tests performed by a qualified testing agency.

B. Oversize Construction Certification: For assemblies required to be fire rated and exceeding limitations of labeled assemblies.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 1. Provide additional protection to prevent damage to factory-finished units.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch-high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Amweld International, LLC.
 2. Apex Industries, Inc.
 3. Ceco Door Products; an Assa Abloy Group company.
 4. Commercial Door & Hardware Inc.
 5. Concept Frames, Inc.
 6. Curries Company; an Assa Abloy Group company.
 7. Custom Metal Products.
 8. Daybar.
 10. de La Fontaine Industries.
 11. DKS Steel Door & Frame Sys. Inc.
 12. Door Components, Inc.
 13. Fleming-Baron Door Products.
 15. Greensteel Industries, Ltd.
 16. HMF Express.
 17. Hollow Metal Inc.
 22. LaForce, Inc.
 23. Megamet Industries, Inc.
 24. Mesker Door Inc.
 25. Michbi Doors Inc.
 26. MPI Group, LLC (The).
 27. National Custom Hollow Metal.
 29. Philipp Manufacturing Co (The).
30. Pioneer Industries, Inc.
31. Premier Products, Inc.
32. Republic Doors and Frames.
33. Rocky Mountain Metals, Inc.
34. Security Metal Products Corp.
35. Shanahans Manufacturing Ltd.
36. Steelcraft; an Ingersoll-Rand company.
37. Steward Steel; Door Division.
38. Stiles Custom Metal, Inc.
39. Titan Metal Products, Inc.
40. Trillium Steel Doors Limited.
41. West Central Mfg. Inc.

B. Source Limitations: Obtain hollow-metal work from single source from single manufacturer.

2.2 REGULATORY REQUIREMENTS

A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.

1. Smoke- and Draft-Control Assemblies: Provide an assembly with gaskets listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.

B. Fire-Rated, Borrowed-Light Assemblies: Complying with NFPA 80 and listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9.

2.3 INTERIOR DOORS AND FRAMES

A. Construct interior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Heavy-Duty Doors and Frames: SDI A250.8, Level 2.

1. Physical Performance: Level B according to SDI A250.4.
2. Doors:

 a. Type: As indicated in the Door and Frame Schedule.
 c. Face: Uncoated, cold-rolled steel sheet, minimum thickness of 0.042 inch.
 d. Edge Construction: Model 1, Full Flush.
 e. Core: Manufacturer's standard kraft-paper honeycomb, polystyrene, polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core at manufacturer's discretion.
 f. Core: Kraft-paper honeycomb.
3. Frames:
 a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch.
 b. Construction: Full profile (fully welded frames).

2.4 EXTERIOR HOLLOW-METAL DOORS AND FRAMES

A. Construct exterior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Heavy-Duty Doors and Frames: SDI A250.8, Level 2.
 1. Physical Performance: Level B according to SDI A250.4.
 2. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 b. Thickness: 1-3/4 inches
 c. Face: Metallic-coated steel sheet, minimum thickness of 0.042 inch, with minimum A40 coating.
 d. Edge Construction: Model 1, Full Flush.
 e. Core: Manufacturer's standard kraft-paper honeycomb, polystyrene, polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core at manufacturer's discretion.
 f. Core: Polyisocyanurate.
 1) Thermal-Rated Doors: Provide doors fabricated with thermal-resistance value (R-value) of not less than 2.1 deg F x h x sq. ft./Btu when tested according to ASTM C 1363.

3. Frames:
 a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A40 coating.
 b. Construction: Full profile welded.
 c. Coordinate wall thicknesses for final frame profile.

4. Exposed Finish: Primed, for field painting.

2.5 HOLLOW-METAL PANELS

A. Provide hollow-metal panels of same materials, construction, and finish as adjacent door assemblies.
2.6 FRAME ANCHORS

A. Jamb Anchors:
 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch thick, with corrugated or perforated straps not less than 2 inches wide by 10 inches long; or wire anchors not less than 0.177 inch thick.
 2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch thick.
 3. Compression Type for Drywall Slip-on Frames: Adjustable compression anchors.
 4. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch-diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.

B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch, and as follows:
 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.
 2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch height adjustment. Terminate bottom of frames at finish floor surface.

2.7 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.

D. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.

E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

F. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.

G. Grout: ASTM C 476, except with a maximum slump of 4 inches, as measured according to ASTM C 143/C 143M.

H. Glazing: Comply with requirements in Section 088000 "Glazing."

I. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.
2.8 FABRICATION

A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Hollow-Metal Doors:

1. Steel-Stiffened Door Cores: Provide minimum thickness 0.026 inch, steel vertical stiffeners of same material as face sheets extending full-door height, with vertical webs spaced not more than 6 inches apart. Spot weld to face sheets no more than 5 inches o.c. Fill spaces between stiffeners with glass- or mineral-fiber insulation.
2. Fire Door Cores: As required to provide fire-protection ratings indicated.
4. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets.
5. Bottom Edge Closures: Close bottom edges of doors where required for attachment of weather stripping with end closures or channels of same material as face sheets.
6. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.
7. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted or as required to comply with published listing of qualified testing agency.
8. Coordinate and provide electrical raceways in construction for completion of electrified hardware.

C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.

1. Sidelight and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
3. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.
4. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
5. Jamb Anchors: Provide number and spacing of anchors as follows:
6. Head Anchors: Two anchors per head for frames more than 42 inches wide and mounted in metal-stud partitions.
7. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
8. Terminated Stops: Terminate stops 6 inches above finish floor with a 45-degree angle cut, and close open end of stop with steel sheet closure. Cover opening in extension of frame with welded-steel filler plate, with welds ground smooth and flush with frame.

9. Coordinate and provide electrical raceways in construction for completion of electrified hardware.

D. Fabricate concealed stiffeners and edge channels from either cold- or hot-rolled steel sheet.

E. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.

1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

F. Stops and Moldings: Provide stops and moldings around glazed lites and louvers where indicated. Form corners of stops and moldings with mitered hairline joints.

1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow-metal work.
2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
4. Provide loose stops and moldings on inside of hollow-metal work.
5. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.

2.9 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.

1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

2.10 ACCESSORIES

A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.

B. Grout Guards: Formed from same material as frames, not less than 0.016 inch thick.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.

B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.

B. Contractor shall include blocking whether shown or not on the drawings for adequate backup and attachment as substrate, if current substrate is not present and/or detailed for adequate sub-contractor Work. Current detailing of drawings does not show means and methods for sub-contractor’s attachment of Work.

C. Hollow-Metal Frames: Install hollow-metal frames of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.

 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.

 a. At fire-rated openings, install frames according to NFPA 80.
 b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 c. Install frames with removable stops located on secure side of opening.
d. Install door silencers in frames before grouting.

e. Remove temporary braces necessary for installation only after frames have been properly set and secured.

f. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.

g. Field apply bituminous coating to backs of frames that will be filled with grout containing antifreezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.

a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.

5. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:

a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.

b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.

c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.

d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

D. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Steel Doors:

a. Between Door and Frame Jambs and Head: 1/8 inch plus or minus 1/32 inch.

b. Between Edges of Pairs of Doors: 1/8 inch to 1/4 inch plus or minus 1/32 inch.

c. At Bottom of Door: 3/4 inch plus or minus 1/32 inch.

d. Between Door Face and Stop: 1/16 inch to 1/8 inch plus or minus 1/32 inch.

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.

3. Smoke-Control Doors: Install doors and gaskets according to NFPA 105.

E. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.

1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.
3.4 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.

B. Remove grout and other bonding material from hollow-metal work immediately after installation.

C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

D. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

E. Factory-Finish Touchup: Clean abraded areas and repair with same material used for factory finish according to manufacturer's written instructions.

F. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081113
SECTION 083113 - ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Access doors and frames for walls and ceilings.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, fire ratings, materials, individual components and profiles, and finishes.
 B. Shop Drawings:
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Detail fabrication and installation of access doors and frames for each type of substrate.
 C. Samples: For each door face material, at least 3 by 5 inches in size, in specified finish.
 D. Product Schedule: Provide complete access door and frame schedule, including types, plan locations, arrangements within rooms, sizes, latching or locking provisions, and other data pertinent to installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Fire-Rated Access Doors and Frames: Units complying with NFPA 80 that are identical to access door and frame assemblies tested for fire-test-response characteristics according to the following test method and that are listed and labeled by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:
 1. NFPA 252 or UL 10B for fire-rated access door assemblies installed vertically.
 2. NFPA 288 for fire-rated access door assemblies installed horizontally.
2.2 ACCESS DOORS AND FRAMES FOR WALLS AND CEILINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Access Panel Solutions.
2. Acudor Products, Inc.
3. Alfab, Inc.
4. Babcock-Davis.
5. Cendrex Inc.
7. Jensen Industries; Div. of Broan-Nutone, LLC.
11. Maxam Metal Products Limited.
12. Metropolitan Door Industries Corp.
13. MIFAB, Inc.
14. Milcor Inc.
15. Nystrom, Inc.

B. Source Limitations: Obtain each type of access door and frame from single source from single manufacturer.

C. Flush Access Doors with Concealed Flanges

1. Assembly Description: Fabricate door to fit flush to frame. Provide frame with beads for concealed flange installation.
2. Locations: Wall.
3. Door Size: Size as required for access.
4. Uncoated Steel Sheet for Door: Nominal 0.060 inch, 16 gage.
5. Metallic-Coated Steel Sheet for Door: Nominal 0.064 inch, 16 gage, for Locations in Wall and ceiling surfaces “NON-WET AREAS” (Fire rated where required.)
6. Stainless-Steel Sheet for Door: Nominal 0.062 inch, 16 gage, For Locations in Wall and ceiling surfaces of tile or otherwise “WET AREAS”.
 a. Finish: No. 4.
7. Frame Material: Same material and thickness as door.
8. Hinges: Continuous.

D. Hardware:

1. Latch: Cam latch.
2.3 MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

B. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.

C. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A 879/A 879M, with cold-rolled steel sheet substrate complying with ASTM A 1008/A 1008M, Commercial Steel (CS), exposed.

D. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 or A60 metallic coating.

E. Rolled-Stainless-Steel Floor Plate: ASTM A 793, manufacturer's standard finish.

F. Stainless-Steel Sheet, Strip, Plate, and Flat Bars: ASTM A 666, Type 304. Remove tool and die marks and stretch lines or blend into finish.

I. Aluminum Sheet: ASTM B 209, alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated, and with not less than strength and durability properties of Alloy 5005-H15; with minimum sheet thickness according to ANSI H35.2.

J. Frame Anchors: Same type as door face.

K. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.

2.4 FABRICATION

A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.

B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.

C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish attachment devices and fasteners of type required to secure access doors to types of supports indicated.

1. For concealed flanges with drywall bead, provide edge trim for gypsum board securely attached to perimeter of frames.
2. Provide mounting holes in frames for attachment of units to metal or wood framing.

D. Recessed Access Doors: Form face of panel to provide recess for application of applied finish. Reinforce panel as required to prevent buckling.

1. For recessed doors with plaster infill, provide self-furring expanded metal lath attached to door panel.
E. Latching Mechanisms: Furnish number required to hold doors in flush, smooth plane when closed.
 1. For cylinder locks, furnish two keys per lock and key all locks alike.
 2. For recessed panel doors, provide access sleeves for each locking device. Furnish plastic grommets and install in holes cut through finish.

2.5 FINISHES

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

D. Steel and Metallic-Coated-Steel Finishes:
 1. Factory Prime: Apply manufacturer's standard, fast-curing, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.

E. Stainless-Steel Finishes:
 1. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
 2. Polished Finishes: Grind and polish surfaces to produce uniform finish, free of cross scratches.
 a. Run grain of directional finishes with long dimension of each piece.
 b. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.
 c. Directional Satin Finish: No. 4.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's written instructions for installing access doors and frames.

B. Install doors flush with adjacent finish surfaces or recessed to receive finish material.
3.3 ADJUSTING

A. Adjust doors and hardware, after installation, for proper operation.

B. Remove and replace doors and frames that are warped, bowed, or otherwise damaged.

END OF SECTION 083113
SECTION 084113 - ALUMINUM-FRAMED STOREFRONTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Exterior window framing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: For aluminum-framed entrances and storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.

1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.

2. Include full-size isometric details of each vertical-to-horizontal intersection of aluminum-framed entrances and storefronts, showing the following:

 a. Joinery, including concealed welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
 e. Flashing and drainage.

3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.

C. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

D. Fabrication Sample: Of each vertical-to-horizontal intersection of assemblies, made from 12-inch lengths of full-size components and showing details of the following:
1. Joinery, including concealed welds.
2. Anchorage.
5. Flashing and drainage.

E. Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data supporting installation.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Energy Performance Certificates: For aluminum-framed entrances and storefronts, accessories, and components, from manufacturer.
 1. Basis for Certification: NFRC-certified energy performance values for each aluminum-framed entrance and storefront.
C. Product Test Reports: For aluminum-framed entrances and storefronts, for tests performed by a qualified testing agency.
D. Quality-Control Program: Developed specifically for Project, including fabrication and installation, according to recommendations in ASTM C 1401. Include periodic quality-control reports.
E. Source quality-control reports.
F. Field quality-control reports.
G. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For aluminum-framed entrances and storefronts to include in maintenance manuals.
B. Maintenance Data for Structural Sealant: For structural-sealant-glazed storefront to include in maintenance manuals. Include ASTM C 1401 recommendations for post-installation-phase quality-control program.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
B. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

C. Structural-Sealant Glazing: Comply with ASTM C 1401 for design and installation of storefront systems.

1.7 WARRANTY

A. Special Warranty: Manufacturer and Installer agree to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 e. Failure of operating components.

2. Warranty Period: 10 years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.

2. Failure also includes the following:

a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

C. Structural Loads:

1. Wind Loads: As indicated on Drawings.

D. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.

2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch, whichever is smaller.

E. Structural: Test according to ASTM E 330 as follows:

1. When tested at positive and negative wind-load design pressures, assemblies do not evidence deflection exceeding specified limits.

2. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.

3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Air Infiltration Per IECC 2015: Test according to ASTM E 283 or NFRC 400 for infiltration as follows:

1. Fixed Framing and Glass Area:
 a. Maximum air leakage of 0.06 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft.

G. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

H. Water Penetration under Dynamic Pressure: Test according to AAMA 501.1 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested at dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.
I. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

J. Energy Performance Per IECC 2015: Certify and label energy performance according to NFRC as follows:

1. Thermal Transmittance (U-factor): Fixed glazing and framing areas shall have U-factor of not more than 0.46 Btu/sq. ft. x h x deg F as determined according to NFRC 100.
2. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than 0.25 on S E & W and 0.33 on N exposures as determined according to NFRC 200.
3. Condensation Resistance: Fixed glazing and framing areas shall have an NFRC-certified condensation resistance rating of no less than 25 as determined according to NFRC 500.

2.2 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product comparable to the following:

1. Kawneer North America,
 b. Interior System, TriFab VG 451 Series, center glazed.

B. Source Limitations: Obtain all components of aluminum-framed entrance and storefront system, including framing and accessories, from single manufacturer.

2.3 FRAMING

A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.

2. Glazing System: Retained mechanically with gaskets on four sides.
5. Fabrication Method: Field-fabricated stick system.

B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

D. Materials:
1. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 a. Sheet and Plate: ASTM B 209.
 b. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 c. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
 d. Structural Profiles: ASTM B 308/B 308M.

2. Steel Reinforcement: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.
 a. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 b. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 c. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.

E. Venting Windows:

1. Manufacturer's standard units, complying with AAMA/WDMA/CSA 101/I.S.2/A440, with self-flashing mounting fins, and as follows:
 a. Window Type: Project- Out
 b. Minimum Performance Class: CW
 c. Minimum Performance Grade: 80
 d. Hardware: Manufacturer's standard; of aluminum or stainless steel; including the following:
 1) Pole-operated, cam handle locking system, where rail is more than 72 inches above floor.
 2) Steel operating arms.
 3) Limit Devices: Concealed friction adjustor and adjustable stay bar limit devices designed to restrict sash opening.
 a) Limit clear opening to 4 inches for ventilation; with custodial key release.
 e. Weather Stripping: Provide full-perimeter weather stripping for each operable sash unless otherwise indicated.
 f. Insect Screens: Provide removable insect screen on each operable exterior sash, with screen frame finished to match window unit, complying with SMA 1004 or SMA 1201, and as follows:
 1) Aluminum Wire Fabric: 18-by-18, 0.0445-inch-by-0.0445 inch; 18-by-16, 0.0445-inch-by-0.0515 inch; or 18-by-14, 0.0445-inch-by-0.0624 inch mesh of 0.013-inch- diameter, coated aluminum wire.
 g. Glazing: Same as adjacent aluminum-framed storefront glazing.
 h. Finish: Match adjacent aluminum-framed storefront finish.
2.4 GLAZING
 A. Glazing: Comply with Section 088000 "Glazing."
 B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers. Comply with Section 088000 "Glazing."
 C. Glazing Sealants: As recommended by manufacturer
 D. Sealants used inside the weatherproofing system shall have a VOC content of 250 g/L.
 E. Weatherseal Sealants: ASTM C 920 for Type S; Grade NS; Class 25; Uses NT, G, A, and O; chemically curing silicone formulation that is compatible with structural sealant and other system components with which it comes in contact; recommended by structural-sealant, weatherseal-sealant, and structural-sealant-glazed storefront manufacturers for this use.

2.5 ACCESSORIES
 A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.
 B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123/A 123M or ASTM A 153/A 153M requirements.
 C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.

2.6 FABRICATION
 A. Form or extrude aluminum shapes before finishing.
 B. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from exterior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
C. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

D. Structural-Sealant-Glazed Framing Members: Include accommodations for using temporary support device to retain glazing in place while structural sealant cures.

E. Storefront Framing: Fabricate components for assembly using stick assembly.

F. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.7 ALUMINUM FINISHES

A. Aluminum: ASTM B 221 (ASTM B 221M), with strength and durability characteristics of not less than Alloy 6063-T5.
 1. Color: Dark bronze.

2.8 SOURCE QUALITY CONTROL

A. Structural Sealant: Perform quality-control procedures complying with ASTM C 1401 recommendations including, but not limited to, assembly material qualification procedures, sealant testing, and assembly fabrication reviews and checks.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:
1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.

C. Set continuous sill members and flashing in full sealant bed to produce weathertight installation.

D. Install components plumb and true in alignment with established lines and grades.

E. Install glazing as specified in Section 088000 "Glazing."

F. Install weatherseal sealant according to Section 079200 "Joint Sealants" and according to sealant manufacturer's written instructions to produce weatherproof joints. Install joint filler behind sealant as recommended by sealant manufacturer.

3.3 ERECTION TOLERANCES

A. Erection Tolerances: Install aluminum-framed entrances and storefronts to comply with the following maximum tolerances:

 1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
 2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
 3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.

 4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Field Quality-Control Testing: Perform the following test on representative areas of aluminum-framed entrances and storefronts.

 1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.

C. Aluminum-framed entrances and storefronts will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.
SECTION 087100 – DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes:
 1. Mechanical and electrified door hardware for:
 a. Swinging doors.
 b. Sliding doors.
 c. Gates.
 2. Electronic access control system components, including:
 a. Biometric access control reader.
 b. Electronic access control devices.
 3. Field verification, preparation and modification of existing doors and frames to receive new door hardware.
 4. Lead-lining door hardware items required for radiation protection at door openings.

B. Exclusions: Unless specifically listed in hardware sets, hardware is not specified in this section for:
 1. Windows.
 2. Cabinets (casework), including locks in cabinets.
 3. Signage.
 4. Toilet accessories.
 5. Overhead doors.

C. Related Sections:
 1. Division 01 Section “Alternates” for alternates affecting this section.
 2. Division 07 Section “Joint Sealants” for sealant requirements applicable to threshold installation specified in this section.
 3. Division 09 sections for touchup finishing or refinishing of existing openings modified by this section.
 4. Division 13 Section “Radiation Protection” for requirements for lead-lining for door hardware at openings indicated to receive radiation protection.
 5. Division 26 sections for connections to electrical power system and for low-voltage wiring.
 6. Division 28 sections for coordination with other components of electronic access control system.
1.3 REFERENCES

A. UL - Underwriters Laboratories.
 1. UL 10B - Fire Test of Door Assemblies.
 2. UL 10C - Positive Pressure Test of Fire Door Assemblies.
 3. UL 1784 - Air Leakage Tests of Door Assemblies.
 4. UL 305 - Panic Hardware.

B. DHI - Door and Hardware Institute.
 1. Sequence and Format for the Hardware Schedule.
 2. Recommended Locations for Builders Hardware.

 1. ANSI/BHMA A156.1 - A156.29, and ANSI/BHMA A156.31 - Standards for Hardware and Specialties.

1.4 SUBMITTALS

A. General:
 1. Submit in accordance with Conditions of Contract and Division 01 requirements.
 2. Highlight, encircle, or otherwise specifically identify on submittals deviations from Contract Documents, issues of incompatibility or other issues which may detrimentally affect the Work.
 3. Prior to forwarding submittal, comply with procedures for verifying existing door and frame compatibility for new hardware, as specified in PART 3, “EXAMINATION” article, herein.

B. Action Submittals:
 1. Product Data: Product data including manufacturers’ technical product data for each item of door hardware, installation instructions, maintenance of operating parts and finish, and other information necessary to show compliance with requirements.
 2. Riser and Wiring Diagrams: After final approval of hardware schedule, submit details of electrified door hardware, indicating:
 a. Wiring Diagrams: For power, signal, and control wiring and including:
 1) Details of interface of electrified door hardware and building safety and security systems.
 2) Schematic diagram of systems that interface with electrified door hardware.
 3) Point-to-point wiring.
 4) Risers.
 3. Samples for Verification: If requested by Architect, submit production sample or sample installations of each type of exposed hardware unit in finish indicated, and tagged with full description for coordination with schedule.
a. Samples will be returned to supplier in like-new condition. Units that are acceptable to Architect may, after final check of operations, be incorporated into Work, within limitations of key coordination requirements.

4. Door Hardware Schedule: Submit schedule with hardware sets in vertical format as illustrated by Sequence of Format for the Hardware Schedule as published by the Door and Hardware Institute. Indicate complete designations of each item required for each door or opening, include:

 a. Door Index; include door number, heading number, and Architects hardware set number.
 b. Opening Lock Function Spreadsheet: List locking device and function for each opening.
 c. Type, style, function, size, and finish of each hardware item.
 d. Name and manufacturer of each item.
 e. Fastenings and other pertinent information.
 f. Location of each hardware set cross-referenced to indications on Drawings.
 g. Explanation of all abbreviations, symbols, and codes contained in schedule.
 h. Mounting locations for hardware.
 i. Door and frame sizes and materials.
 j. Name and phone number for local manufacturer's representative for each product.
 k. Operational Description of openings with any electrified hardware (locks, exits, electromagnetic locks, electric strikes, automatic operators, door position switches, magnetic holders or closer/holder units, and access control components). Operational description should include how door will operate on egress, ingress, and fire and smoke alarm connection.

 1) Submittal Sequence: Submit door hardware schedule concurrent with submissions of Product Data, Samples, and Shop Drawings. Coordinate submission of door hardware schedule with scheduling requirements of other work to facilitate fabrication of other work that is critical in Project construction schedule.

5. Key Schedule:

 a. After Keying Conference, provide keying schedule listing levels of keying as well as explanation of key system's function, key symbols used and door numbers controlled.
 b. Use ANSI/BHMA A156.28 “Recommended Practices for Keying Systems” as guideline for nomenclature, definitions, and approach for selecting optimal keying system.
 c. Provide 3 copies of keying schedule for review prepared and detailed in accordance with referenced DHI publication. Include schematic keying diagram and index each key to unique door designations.
 d. Index keying schedule by door number, keyset, hardware heading number, cross keying instructions, and special key stamping instructions.
 e. Provide one complete bitting list of key cuts and one key system schematic illustrating system usage and expansion.

 1) Forward bitting list, key cuts and key system schematic directly to Owner, by means as directed by Owner.
f. Prepare key schedule by or under supervision of supplier, detailing Owner’s final keying instructions for locks.

6. Templates: After final approval of hardware schedule, provide templates for doors, frames and other work specified to be factory prepared for door hardware installation.

C. Informational Submittals:

1. Qualification Data: For Supplier, Installer and Architectural Hardware Consultant.
2. Product Certificates for electrified door hardware, signed by manufacturer:
 a. Certify that door hardware approved for use on types and sizes of labeled fire-rated doors complies with listed fire-rated door assemblies.
3. Certificates of Compliance:
 a. Certificates of compliance for fire-rated hardware and installation instructions if requested by Architect or Authority Having Jurisdiction.
 b. Installer Training Meeting Certification: Letter of compliance, signed by Contractor, attesting to completion of installer training meeting specified in “QUALITY ASSURANCE” article, herein.
 c. Electrified Hardware Coordination Conference Certification: Letter of compliance, signed by Contractor, attesting to completion of electrified hardware coordination conference, specified in “QUALITY ASSURANCE” article, herein.
4. Product Test Reports: For compliance with accessibility requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by qualified testing agency, for door hardware on doors located in accessible routes.
5. Warranty: Special warranty specified in this Section.

D. Closeout Submittals:

1. Operations and Maintenance Data: Provide in accordance with Division 01 and include:
 a. Complete information on care, maintenance, and adjustment; data on repair and replacement parts, and information on preservation of finishes.
 b. Catalog pages for each product.
 c. Name, address, and phone number of local representative for each manufacturer.
 d. Parts list for each product.
 e. Final approved hardware schedule, edited to reflect conditions as-installed.
 f. Final keying schedule
 g. Copies of floor plans with keying nomenclature
 h. As-installed wiring diagrams for each opening connected to power, both low voltage and 110 volts.
 i. Copy of warranties including appropriate reference numbers for manufacturers to identify project.

1.5 QUALITY ASSURANCE

A. Product Substitutions: Comply with product requirements stated in Division 01 and as specified herein.
1. Where specific manufacturer’s product is named and accompanied by “No Substitute,” including make or model number or other designation, provide product specified. (Note: Certain products have been selected for their unique characteristics and particular project suitability.)
 a. Where no additional products or manufacturers are listed in product category, requirements for “No Substitute” govern product selection.

2. Where products indicate “acceptable manufacturers” or “acceptable manufacturers and products”, provide product from specified manufacturers, subject to compliance with specified requirements and “Single Source Responsibility” requirements stated herein.

B. Supplier Qualifications and Responsibilities: Recognized architectural hardware supplier with record of successful in-service performance for supplying door hardware similar in quantity, type, and quality to that indicated for this Project and that provides certified Architectural Hardware Consultant (AHC) available to Owner, Architect, and Contractor, at reasonable times during the Work for consultation.
 1. Warehousing Facilities: In Project's vicinity.
 2. Scheduling Responsibility: Preparation of door hardware and keying schedules.
 3. Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
 4. Coordination Responsibility: Coordinate installation of electronic security hardware with Architect and electrical engineers and provide installation and technical data to Architect and other related subcontractors.
 a. Upon completion of electronic security hardware installation, inspect and verify that all components are working properly.

C. Installer Qualifications: Qualified tradesmen, skilled in application of commercial grade hardware with record of successful in-service performance for installing door hardware similar in quantity, type, and quality to that indicated for this Project.

D. Architectural Hardware Consultant Qualifications: Person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and meets these requirements:
 1. For door hardware, DHI-certified, Architectural Hardware Consultant (AHC).
 2. Can provide installation and technical data to Architect and other related subcontractors.
 3. Can inspect and verify components are in working order upon completion of installation.
 5. Capable of coordinating installation of electrified hardware with Architect and electrical engineers.

E. Single Source Responsibility: Obtain each type of door hardware from single manufacturer.
 1. Provide electrified door hardware from same manufacturer as mechanical door hardware, unless otherwise indicated.
 2. Manufacturers that perform electrical modifications and that are listed by testing and inspecting agency acceptable to authorities having jurisdiction are acceptable.
F. Fire-Rated Door Openings: Provide door hardware for fire-rated openings that complies with NFPA 80 and requirements of authorities having jurisdiction. Provide only items of door hardware that are listed and are identical to products tested by Underwriters Laboratories, Intertek Testing Services, or other testing and inspecting organizations acceptable to authorities having jurisdiction for use on types and sizes of doors indicated, based on testing at positive pressure and according to NFPA 252 or UL 10C and in compliance with requirements of fire-rated door and door frame labels.

G. Smoke- and Draft-Control Door Assemblies: Where smoke- and draft-control door assemblies are required, provide door hardware that meets requirements of assemblies tested according to UL 1784 and installed in compliance with NFPA 105.

1. Air Leakage Rate: Maximum air leakage of 0.3 cfm/sq. ft. (3 cu. m per minute/sq. m) at tested pressure differential of 0.3-inch wg (75 Pa) of water.

H. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, Article 100, by testing agency acceptable to authorities having jurisdiction.

I. Means of Egress Doors: Latches do not require more than 15 lbf (67 N) to release latch. Locks do not require use of key, tool, or special knowledge for operation.

J. Accessibility Requirements: For door hardware on doors in an accessible route, comply with governing accessibility regulations cited in “REFERENCES” article, herein.

1. Provide operating devices that do not require tight grasping, pinching, or twisting of wrist and that operate with force of not more than 5 lbf (22.2 N).

2. Maximum opening-force requirements:

 a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf (22.2 N) applied perpendicular to door.
 b. Sliding or Folding Doors: 5 lbf (22.2 N) applied parallel to door at latch.
 c. Fire Doors: Minimum opening force allowable by authorities having jurisdiction.

3. Bevel raised thresholds with slope of not more than 1:2. Provide thresholds not more than 1/2 inch (13 mm) high.

4. Adjust door closer sweep periods so that, from open position of 70 degrees, door will take at least 3 seconds to move to 3 inches (75 mm) from latch, measured to leading edge of door.

K. Keying Conference: Conduct conference at Project site to comply with requirements in Division 01.

2. Incorporate keying conference decisions into final keying schedule after reviewing door hardware keying system including:

 a. Function of building, flow of traffic, purpose of each area, degree of security required, and plans for future expansion.
 b. Preliminary key system schematic diagram.
 c. Requirements for key control system.
 d. Requirements for access control.
 e. Address for delivery of keys.
L. Pre-installation Conference: Conduct conference at Project site.
 1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 2. Inspect and discuss preparatory work performed by other trades.
 3. Inspect and discuss electrical roughing-in for electrified door hardware.
 4. Review sequence of operation for each type of electrified door hardware.
 5. Review required testing, inspecting, and certifying procedures.

M. Coordination Conferences:
 1. Installation Coordination Conference: Prior to hardware installation, schedule and hold meeting to review questions or concerns related to proper installation and adjustment of door hardware.
 a. Attendees: Door hardware supplier, door hardware installer, Contractor.
 b. After meeting, provide letter of compliance to Architect, indicating when meeting was held and who was in attendance.
 2. Electrified Hardware Coordination Conference: Prior to ordering electrified hardware, schedule and hold meeting to coordinate door hardware with security, electrical, doors and frames, and other related suppliers.
 a. Attendees: electrified door hardware supplier, doors and frames supplier, electrified door hardware installer, electrical subcontractor, Owner, Owner’s security consultant, Architect and Contractor.
 b. After meeting, provide letter of compliance to Architect, indicating when coordination conference was held and who was in attendance.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up for hardware delivered to Project site.

B. Tag each item or package separately with identification coordinated with final door hardware schedule, and include installation instructions, templates, and necessary fasteners with each item or package.
 1. Deliver each article of hardware in manufacturer’s original packaging.

C. Project Conditions:
 1. Maintain manufacturer-recommended environmental conditions throughout storage and installation periods.
 2. Provide secure lock-up for door hardware delivered to Project, but not yet installed. Control handling and installation of hardware items so that completion of Work will not be delayed by hardware losses both before and after installation.

D. Protection and Damage:
 1. Promptly replace products damaged during shipping.
2. Handle hardware in manner to avoid damage, marring, or scratching. Correct, replace or repair products damaged during Work.
3. Protect products against malfunction due to paint, solvent, cleanser, or any chemical agent.

E. Deliver keys to manufacturer of key control system for subsequent delivery to Owner.

F. Deliver keys to Owner by registered mail or overnight package service.

1.7 COORDINATION

A. Coordinate layout and installation of floor-recessed door hardware with floor construction. Cast anchoring inserts into concrete. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Installation Templates: Distribute for doors, frames, and other work specified to be factory prepared. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.

C. Security: Coordinate installation of door hardware, keying, and access control with Owner's security consultant.

D. Electrical System Roughing-In: Coordinate layout and installation of electrified door hardware with connections to power supplies and building safety and security systems.

E. Existing Openings: Where hardware components are scheduled for application to existing construction or where modifications to existing door hardware are required, field verify existing conditions and coordinate installation of door hardware to suit opening conditions and to provide proper door operation.

F. Direct shipments not permitted, unless approved by Contractor.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Years from date of Substantial Completion, for durations indicated.

 a. Closers:

 1) Mechanical: 30 years.

 b. Automatic Operators: 2 year.

 c. Exit Devices:

 1) Mechanical: 3 years.
 2) Electrified: 1 year.
d. Locksets:
 1) Mechanical: 3 years.
 2) Electrified: 1 year.

e. Key Blanks: Lifetime

2. Warranty does not cover damage or faulty operation due to improper installation, improper use or abuse.

1.9 MAINTENANCE

A. Maintenance Tools:
 1. Furnish complete set of special tools required for maintenance and adjustment of hardware, including changing of cylinders.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. The Owner requires use of certain products for their unique characteristics and particular project suitability to insure continuity of existing and future performance and maintenance standards. After investigating available product offerings, the Awarding Authority has elected to prepare proprietary specifications. These products are specified with the notation: “No Substitute.”

 1. Where “No Substitute” is noted, submittals and substitution requests for other products will not be considered.

B. Approval of manufacturers and/or products other than those listed as ”Scheduled Manufacturer” or “Acceptable Manufacturers” in the individual article for the product category shall be in accordance with QUALITY ASSURANCE article, herein.

C. Approval of products from manufacturers indicated in “Acceptable Manufacturers” is contingent upon those products providing all functions and features and meeting all requirements of scheduled manufacturer’s product.

D. Hand of Door: Drawings show direction of slide, swing, or hand of each door leaf. Furnish each item of hardware for proper installation and operation of door movement as shown.

E. Where specified hardware is not adaptable to finished shape or size of members requiring hardware, furnish suitable types having same operation and quality as type specified, subject to Architect's approval.

2.2 MATERIALS

A. Fasteners
1. Provide hardware manufactured to conform to published templates, generally prepared for machine screw installation.

2. Furnish screws for installation with each hardware item. Finish exposed (exposed under any condition) screws to match hardware finish, or, if exposed in surfaces of other work, to match finish of this other work including prepared for paint surfaces to receive painted finish.

3. Provide concealed fasteners for hardware units exposed when door is closed except when no standard units of type specified are available with concealed fasteners. Do not use thru-bolts for installation where bolt head or nut on opposite face is exposed in other work unless thru-bolts are required to fasten hardware securely. Review door specification and advise Architect if thru-bolts are required.

4. Install hardware with fasteners provided by hardware manufacturer.

B. Provide screws, bolts, expansion shields, drop plates and other devices necessary for hardware installation.

 1. Where fasteners are exposed to view: Finish to match adjacent door hardware material.

C. Cable and Connectors: Hardwired Electronic Access Control Lockset and Exit Device Trim:

 1. Data: 24AWG, 4 conductor shielded, Belden 9843, 9841 or comparable.
 2. DC Power: 18 AWG, 2 conductor, Belden 8760 or comparable.
 3. Provide type of data and DC power cabling required by access control device manufacturer for this installation.
 4. Where scheduled in the hardware sets, provide each item of electrified hardware and wire harnesses with sufficient number and wire gauge with standardized Molex plug connectors to accommodate electric function of specified hardware. Provide Molex connectors that plug directly into connectors from harnesses, electric locking and power transfer devices. Provide through-door wire harness for each electrified locking device installed in a door and wire harness for each electrified hinge, electrified continuous hinge, electrified pivot, and electric power transfer for connection to power supplies.

2.3 HINGES

A. Manufacturers and Products:

 2. Acceptable Manufacturers and Products: Hager, ABH.

B. Requirements:

 1. Provide five-knuckle, ball bearing hinges conforming to ANSI/BHMA A156.1.
 2. 1-3/4 inch (44 mm) thick doors, up to and including 36 inches (914 mm) wide:
 a. Exterior: Standard weight, bronze or stainless steel, 4-1/2 inches (114 mm) high.
 b. Interior: Standard weight, steel, 4-1/2 inches (114 mm) high.
 3. 1-3/4 inch (44 mm) thick doors over 36 inches (914 mm) wide:
 a. Exterior: Heavy weight, bronze/stainless steel, 5 inches (127 mm) high.
 b. Interior: Heavy weight, steel, 5 inches (127 mm) high.
4. 2 inches or thicker doors:
 a. Exterior: Heavy weight, bronze or stainless steel, 5 inches (127 mm) high.
 b. Interior: Heavy weight, steel, 5 inches (127 mm) high.

5. Provide three hinges per door leaf for doors 90 inches (2286 mm) or less in height, and one additional hinge for each 30 inches (762 mm) of additional door height.

6. Where new hinges are specified for existing doors or existing frames, provide new hinges of identical size to hinge preparation present in existing door or existing frame.

7. Hinge Pins: Except as otherwise indicated, provide hinge pins as follows:
 a. Steel Hinges: Steel pins.
 d. Out-Swinging Interior Lockable Doors: Non-removable pins.
 e. Interior Non-lockable Doors: Non-rising pins.

8. Width of hinges: 4-1/2 inches (114 mm) at 1-3/4 inch (44 mm) thick doors, and 5 inches (127 mm) at 2 inches (51 mm) or thicker doors. Adjust hinge width as required for door, frame, and wall conditions to allow proper degree of opening.

9. Doors 36 inches (914 mm) wide or less furnish hinges 4-1/2 inches (114 mm) high; doors greater than 36 inches (914 mm) wide furnish hinges 5 inches (127 mm) high, heavy weight or standard weight as specified.

10. Provide hinges with electrified options as scheduled in the hardware sets. Provide with sufficient number and wire gage to accommodate electric function of specified hardware. Locate electric hinge at second hinge from bottom or nearest to electrified locking component.

11. Provide mortar guard for each electrified hinge specified.

12. Provide spring hinges where specified. Provide two spring hinges and one bearing hinge per door leaf for doors 90 inches (2286 mm) or less in height. Provide one additional bearing hinge for each 30 inches (762 mm) of additional door height.

13. Provide continuous hinges where specified.

2.4 MORTISE LOCKS – GRADE 1

A. Manufacturers and Products:

B. Requirements:

1. Provide cylindrical locks conforming to the following standards and requirements:
 a. ANSI/BHMA A156.2 Series 4000, Grade 1.
 b. UL 10C for 4'-0" x 10'-0" 3-hour fire door.

2. Cylinders: Refer to “KEYING” article, herein.

3. Provide cylindrical locksets exceeding the ANSI/BHMA A156.2 Grade 1 performance standards for strength, security, and durability in the categories below:
a. Abusive Locked Lever Torque Test – minimum 3,100 inch-pounds without gaining access
b. Cycle life - tested to minimum 10 million cycles per ANSI/BHMA A156.2 Cycle Test with no visible lever sag or use of performance aids such as set screws or spacers.

4. Provide locks with standard 2-3/4 inches (70 mm) backset, unless noted otherwise, with 1/2 inch latch throw. Provide proper latch throw for UL listing at pairs.
5. Provide locksets with separate anti-rotation thru-bolts, and no exposed screws.
6. Provide independently operating levers with two external return spring cassettes mounted under roses to prevent lever sag.
7. Provide standard ASA strikes unless extended lip strikes are necessary to protect trim.
8. Provide electrified options as scheduled in the hardware sets.
9. Lever Trim: Solid cast levers without plastic inserts, and wrought roses on both sides. Knurled finishes at openings serving rooms considered to be hazardous.

2.5 CYLINDERS

A. Manufacturers:
 1. Scheduled Manufacturer: Schlage.

B. Requirements:
 1. Provide permanent cylinders/cores to match Owner’s existing key system, compliant with ANSI/BHMA A156.5; latest revision, Section 12, Grade 1; permanent cylinders; cylinder face finished to match lockset, manufacturer’s series as indicated. Refer to “KEYING” article, herein.
 2. Replaceable Construction Cores.
 a. Provide temporary construction cores replaceable by permanent cores, furnished in accordance with the following requirements.
 1) 3 construction control keys.
 2) 12 construction change (day) keys.
 b. Owner or Owner’s Representative will replace temporary construction cores with permanent cores.

2.6 KEYING

A. Provide a factory registered keying system, complying with guidelines in ANSI/BHMA A156.28, incorporating decisions made at keying conference.

B. Provide cylinders/cores keyed into Owner’s existing factory registered keying system, complying with guidelines in ANSI/BHMA A156.28, incorporating decisions made at keying conference.

C. Requirements:
1. Provide permanent cylinders/cores keyed by the manufacturer according to the following key system.
 a. Master Keying system as directed by the Owner.

2. Forward bitting list and keys separately from cylinders, by means as directed by Owner. Failure to comply with forwarding requirements shall be cause for replacement of cylinders/cores involved at no additional cost to Owner.

3. Provide keys with the following features:
 a. Material: Nickel silver; minimum thickness of .107-inch (2.3mm).
 b. Patent Protection: Keys and blanks protected by one or more utility patent(s).

4. Identification:
 a. Mark permanent cylinders/cores and keys with applicable blind code per DHI publication “Keying Systems and Nomenclature” for identification. Blind code marks shall not include actual key cuts.
 b. Identification stamping provisions must be approved by the Architect and Owner.
 c. Stamp cylinders/cores and keys with Owner’s unique key system facility code as established by the manufacturer; key symbol and embossed or stamped with “DO NOT DUPLICATE” along with the “PATENTED” or patent number to enforce the patent protection.
 d. Failure to comply with stamping requirements shall be cause for replacement of keys involved at no additional cost to Owner.
 e. Forward permanent cylinders/cores to Owner, separately from keys, by means as directed by Owner.

5. Quantity: Furnish in the following quantities.
 a. Change (Day) Keys: 3 per cylinder/core.
 c. 3 Temp Core Removable Keys.
 d. 3 Perm Core Installation Keys.

2.7 KEY CONTROL SYSTEM

A. Manufacturers:
 1. Scheduled Manufacturer: Telkee
 2. Acceptable Manufacturers: HPC, Lund

B. Requirements:
 1. Provide key control system, including envelopes, labels, tags with self-locking key clips, receipt forms, 3-way visible card index, temporary markers, permanent markers, and standard metal cabinet, all as recommended by system manufacturer, with capacity for 150% of number of locks required for Project.
 a. Provide complete cross index system set up by hardware supplier, and place keys on markers and hooks in cabinet as determined by final key schedule.
 b. Provide hinged-panel type cabinet for wall mounting.
2.8 DOOR CLOSERS

A. Manufacturers and Products:
 1. Scheduled Manufacturer and Product: LCN

B. Requirements:
 1. Provide door closers conforming to ANSI/BHMA A156.4 Grade 1 requirements by BHMA certified independent testing laboratory.
 2. Provide door closers with fully hydraulic, full rack and pinion action cast iron cylinder.
 3. Closer Body: 1-1/4 inch (32 mm) diameter, with 5/8 inch (16 mm) diameter heat-treated pinion journal.
 4. Hydraulic Fluid: Fireproof, passing requirements of UL10C, and requiring no seasonal closer adjustment for temperatures ranging from 120 degrees F to -30 degrees F.
 5. Spring Power: Continuously adjustable over full range of closer sizes, and providing reduced opening force as required by accessibility codes and standards. Cylinder body to have “FAST” power adjust speed dial to visually indicate spring power.
 6. Hydraulic Regulation: By tamper-proof, non-critical valves, with separate adjustment for latch speed, general speed, and backcheck.
 7. Pressure Relief Valve (PRV) Technology: not permitted.
 8. Provide special templates, drop plates, mounting brackets, or adapters for arms as required for details, overhead stops, and other door hardware items interfering with closer mounting.

2.9 DOOR TRIM

A. Manufacturers:
 1. Scheduled Manufacturer: Ives.

B. Requirements:
 1. Provide push plates 4 inches (102 mm) wide by 16 inches (406 mm) high by 0.050 inch (1 mm) thick and beveled 4 edges. Where width of door stile prevents use of 4 inches (102 mm) wide plate, adjust width to fit.
 2. Provide push bars of solid bar stock, diameter and length as scheduled. Provide push bars of sufficient length to span from center to center of each stile. Where required, mount back to back with pull.
 3. Provide offset pulls of solid bar stock, diameter and length as scheduled. Where required, mount back to back with push bar.
 4. Provide flush pulls as scheduled. Where required, provide back-to-back mounted model.
 5. Provide pulls of solid bar stock, diameter and length as scheduled. Where required, mount back to back with push bar.
 6. Provide pull plates 4 inches (102 mm) wide by 16 inches (406 mm) high by 0.050 inch (1 mm) thick, beveled 4 edges, and prepped for pull. Where width of door stile prevents use of 4 inches (102 mm) wide plate, adjust width to fit.
 7. Provide wire pulls of solid bar stock, diameter and length as scheduled.
 8. Provide decorative pulls as scheduled. Where required, mount back to back with pull.
2.10 PROTECTION PLATES

A. Manufacturers:
 1. Scheduled Manufacturer: Ives.

B. Requirements:
 1. Provide kick plates, mop plates, and armor plates minimum of 0.050 inch (1 mm) thick, beveled four edges as scheduled. Furnish with sheet metal or wood screws, finished to match plates.
 2. Sizes of plates:
 a. Kick Plates: 10 inches (254 mm) high by 2 inches (51 mm) less width of door on single doors, 1 inch (25 mm) less width of door on pairs.
 b. Mop Plates: 4 inches (102 mm) high by 2 inches (51 mm) less width of door on single doors, 1 inch (25 mm) less width of door on pairs.
 c. Armor Plates: 36 inches (914 mm) high by 2 inches (51 mm) less width of door on single doors, 1 inch (25 mm) less width of door on pairs.

2.11 OVERHEAD STOPS AND OVERHEAD STOP/HOLDERS

A. Manufacturers:
 1. Scheduled Manufacturers: Glynn-Johnson.

B. Requirements:
 1. Provide heavy duty concealed mounted overhead stop or holder as specified for exterior and interior vestibule single acting doors.
 2. Provide heavy duty concealed mounted overhead stop or holder as specified for double acting doors.
 3. Provide heavy or medium duty and concealed or surface mounted overhead stop or holder for interior doors as specified. Provide medium duty surface mounted overhead stop for interior doors and at any door that swings more than 140 degrees before striking wall, open against equipment, casework, sidelights, and where conditions do not allow wall stop or floor stop presents tripping hazard.
 4. Where overhead holders are specified provide friction type at doors without closer and positive type at doors with closer.

2.12 DOOR STOPS AND HOLDERS

A. Manufacturers:
 1. Scheduled Manufacturer: Ives.

B. Provide door stops at each door leaf:
1. Provide wall stops wherever possible. Provide convex type where mortise type locks are used and concave type where cylindrical type locks are used.
2. Where a wall stop cannot be used, provide universal floor stops for low or high rise options.
3. Where wall or floor stop cannot be used, provide medium duty surface mounted overhead stop.

2.13 THRESHOLDS, SEALS, DOOR SWEEPS, AUTOMATIC DOOR BOTTOMS, AND GASKETING

A. Manufacturers:

B. Requirements:
 1. Provide thresholds, weather-stripping (including door sweeps, seals, and astragals) and gasketing systems (including smoke, sound, and light) as specified and per architectural details. Match finish of other items.
 2. Size of thresholds:
 a. Saddle Thresholds: 1/2 inch (13 mm) high by jamb width by door width.
 b. Bumper Seal Thresholds: 1/2 inch (13 mm) high by 5 inches (127 mm) wide by door width.
 3. Provide door sweeps, seals, astragals, and auto door bottoms only of type where resilient or flexible seal strip is easily replaceable and readily available.

2.14 SILENCERS

A. Manufacturers:
 1. Scheduled Manufacturer: Ives.

B. Requirements:
 1. Provide "push-in" type silencers for hollow metal or wood frames.
 2. Provide one silencer per 30 inches (762 mm) of height on each single frame, and two for each pair frame.
 3. Omit where gasketing is specified.

2.15 FINISHES

A. Finish: BHMA 626/652 (US26D); except:

PART 3 - EXECUTION

3.1 EXAMINATION

A. Prior to installation of hardware, examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire-rated door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Existing Door and Frame Compatibility: Field verify existing doors and frames receiving new hardware and existing conditions receiving new openings. Verify that new hardware is compatible with existing door and frame preparation and existing conditions.

C. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Where on-site modification of doors and frames is required:

1. Carefully remove existing door hardware and components being reused. Clean, protect, tag, and store in accordance with storage and handling requirements specified herein.
2. Field modify and prepare existing door and frame for new hardware being installed.
3. When modifications are exposed to view, use concealed fasteners, when possible.
4. Prepare hardware locations and reinstall in accordance with installation requirements for new door hardware and with:
 a. Steel Doors and Frames: For surface applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.
 b. Wood Doors: DHI WDHS.5 "Recommended Hardware Reinforcement Locations for Mineral Core Wood Flush Doors."
 c. Doors in rated assemblies: NFPA 80 for restrictions on on-site door hardware preparation.

3.3 INSTALLATION

A. Mounting Heights: Mount door hardware units at heights to comply with the following, unless otherwise indicated or required to comply with governing regulations.
2. Custom Steel Doors and Frames: HMMA 831.

B. Install each hardware item in compliance with manufacturer’s instructions and recommendations, using only fasteners provided by manufacturer.

C. Do not install surface mounted items until finishes have been completed on substrate. Protect all installed hardware during painting.

D. Set units level, plumb and true to line and location. Adjust and reinforce attachment substrate as necessary for proper installation and operation.

E. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.

F. Install operating parts so they move freely and smoothly without binding, sticking, or excessive clearance.

G. Hinges: Install types and in quantities indicated in door hardware schedule but not fewer than quantity recommended by manufacturer for application indicated or one hinge for every 30 inches (750 mm) of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.

H. Intermediate Offset Pivots: Where offset pivots are indicated, provide intermediate offset pivots in quantities indicated in door hardware schedule but not fewer than one intermediate offset pivot per door and one additional intermediate offset pivot for every 30 inches (750 mm) of door height greater than 90 inches (2286 mm).

I. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 1. Replace construction cores with permanent cores as indicated in keying section.

J. Lead Protection: Lead wrap hardware penetrating lead-lined doors. Levers and roses to be lead lined. Apply kick and armor plates on lead-lined doors with adhesive as recommended by manufacturer.

K. Wiring: Coordinate with Division 26, ELECTRICAL sections for:
 1. Conduit, junction boxes and wire pulls.
 2. Connections to and from power supplies to electrified hardware.
 3. Connections to fire/smoke alarm system and smoke evacuation system.
 4. Connection of wire to door position switches and wire runs to central room or area, as directed by Architect.
 5. Testing and labeling wires with Architect’s opening number.

L. Key Control System: Tag keys and place them on markers and hooks in key control system cabinet, as determined by final keying schedule.

M. Door Closers: Mount closers on room side of corridor doors, inside of exterior doors, and stair side of stairway doors from corridors. Closers shall not be visible in corridors, lobbies and other public spaces unless approved by Architect.
N. Closer/ Holders: Mount closer/holders on room side of corridor doors, inside of exterior doors, and stair side of stairway doors.

O. Power Supplies: Locate power supplies as indicated or, if not indicated, above accessible ceilings or in equipment room, or alternate location as directed by Architect.
 1. Configuration: Provide least number of power supplies required to adequately serve doors with electrified door hardware.

P. Thresholds: Set thresholds in full bed of sealant complying with requirements specified in Division 07 Section "Joint Sealants."

Q. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they may impede traffic or present tripping hazard.

R. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.

S. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.

T. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.4 FIELD QUALITY CONTROL

A. Architectural Hardware Consultant: Engage qualified independent Architectural Hardware Consultant to perform inspections and to prepare inspection reports.
 1. Architectural Hardware Consultant will inspect door hardware and state in each report whether installed work complies with or deviates from requirements, including whether door hardware is properly installed and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 1. Spring Hinges: Adjust to achieve positive latching when door is allowed to close freely from an open position of 30 degrees.
 2. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt.
 3. Door Closers: Adjust sweep period to comply with accessibility requirements and requirements of authorities having jurisdiction.

B. Occupancy Adjustment: Approximately three months after date of Substantial Completion, Installer's Architectural Hardware Consultant shall examine and readjust each item of door hardware, including adjusting operating forces, as necessary to ensure function of doors, door hardware, and electrified door hardware.
3.6 CLEANING AND PROTECTION
 A. Clean adjacent surfaces soiled by door hardware installation.
 B. Clean operating items as necessary to restore proper function and finish.
 C. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of Substantial Completion.

3.7 DEMONSTRATION
 A. Provide training for Owner's maintenance personnel to adjust, operate, and maintain door hardware and door hardware finishes. Refer to Division 01 Section "Demonstration and Training."

3.8 DOOR HARDWARE SCHEDULE
 A. Locksets, exit devices, and other hardware items are referenced in the following hardware sets for series, type and function. Refer to the above-specifications for special features, options, cylinders/keying, and other requirements.
 B. Hardware Sets:

OPT0178211
HwSet 201

Each Assembly to have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1 4.5 X 4.5</td>
<td>$652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>L9080T 17A</td>
<td>$626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td>$626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP RW/PA X MTG BRKT, SPCR & PLATE AS REQ</td>
<td>$689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>$630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP</td>
<td>WS406/407CCV</td>
<td>$630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>488S PSA H & J (USE SILENCERS @ NON-RATED DOORS)</td>
<td>$630</td>
<td>ZER</td>
</tr>
</tbody>
</table>

HwSet 205

Each Assembly to have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONT. HINGE</td>
<td>112XY HEIGHT AS REQ</td>
<td>$628</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>L9080T 17A</td>
<td>$626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td>$626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>LOCK GUARD</td>
<td>LG TYPE AS REQ</td>
<td>$630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH X MTG BRKT, SPCR & PLATE AS REQ</td>
<td>$689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142A DW + 4"</td>
<td>$630</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>328AA H & J</td>
<td>$689</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8198AA LENGTH AS REQ</td>
<td>$65A</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>65A LENGTH AS REQ</td>
<td>$65A</td>
<td>ZER</td>
</tr>
</tbody>
</table>
HwSet 305DL

Each Assembly to have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONT. HINGE</td>
<td>112XY HEIGHT AS REQ</td>
<td></td>
<td>628</td>
</tr>
<tr>
<td>1</td>
<td>PRIVACY LOCK</td>
<td>L9040 17A L583-363</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM DEADBOLT</td>
<td>B663T</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH X MTG BRKT, SPCR & PLATE AS REQ</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>328AA H & J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8198AA LENGTH AS REQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>655A LENGTH AS REQ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HwSet 401

1 SGL Door 101C

Each Assembly to have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1 4.5 X 4.5</td>
<td></td>
<td>652</td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE SET</td>
<td>L9010 17A</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP RW/PA X MTG BRKT, SPCR & PLATE AS REQ</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP</td>
<td>WS406/407CCV</td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>488S PSA H & J (USE SILENCERS @ NON-RATED DOORS)</td>
<td>BK</td>
<td>ZER</td>
</tr>
</tbody>
</table>

HwSet 401C

1 SGL Door 102D

Each Assembly to have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1 4.5 X 4.5</td>
<td></td>
<td>652</td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE SET</td>
<td>L9010 17A</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH X MTG BRKT, SPCR & PLATE AS REQ</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>488S PSA H & J (USE SILENCERS @ NON-RATED DOORS)</td>
<td>BK</td>
<td>ZER</td>
</tr>
</tbody>
</table>
HwSet 805DL

Each Assembly to have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONT. HINGE</td>
<td>112XY HEIGHT AS REQ</td>
<td>628</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM DEADBOLT</td>
<td>B663T</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH X MTG BRKT, SPCR & PLATE AS REQ</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142A DW + 4"</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>328AA H & J</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8198AA LENGTH AS REQ</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>65A LENGTH AS REQ</td>
<td>A</td>
<td>ZER</td>
</tr>
</tbody>
</table>

END OF SECTION 087100
SECTION 088000 - GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes:
 1. Glass for windows, doors and storefront framing.
 2. Glazing sealants and accessories.

1.3 DEFINITIONS
 A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in
 referenced glazing publications.
 B. Glass Thicknesses: Indicated by thickness designations in millimeters according to
 ASTM C 1036.
 D. Interspace: Space between lites of an insulating-glass unit.

1.4 COORDINATION
 A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and
 face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Glass Samples: For each type of glass product; 12 inches square.
 C. Glazing Accessory Samples: For sealants, in 12-inch lengths. Install sealant Samples between
 two strips of material representative in color of the adjoining framing system.
 D. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same
 designations indicated on Drawings.
E. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturers of insulating-glass units with sputter-coated, low-E coatings, glass testing agency and sealant testing agency.

B. Product Certificates: For glass.

C. Product Test Reports: For of products, for tests performed by a qualified testing agency.
 1. For glazing sealants, provide test reports based on testing current sealant formulations within previous 36-month period.

D. Preconstruction adhesion and compatibility test report.

E. Sample Warranties: For special warranties.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved and certified by coated-glass manufacturer.

B. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

C. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.

D. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

B. Comply with insulating-glass manufacturer's written instructions for venting and sealing units to avoid hermetic seal ruptures due to altitude change.
1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.

1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F.

1.10 WARRANTY

A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.

1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Glass Product: Subject to compliance with requirements, provide product indicated in glass schedules or comparable product by one of the following:

1. AGC Glass Company North America, Inc.
2. Cardinal Glass Industries.
3. Guardian Industries Corp.
4. Oldcastle BuildingEnvelope.
5. Pilkington North America Inc.
6. PPG Industries, Inc.
7. Viracon, Inc.

B. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type.
1. Obtain tinted glass from single source from single manufacturer.
2. Obtain reflective-coated glass from single source from single manufacturer.

C. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 PERFORMANCE REQUIREMENTS
A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.

B. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the IBC and ASTM E 1300.
1. Design Wind Pressures: As indicated on Drawings.
2. Design Wind Pressures: Determine design wind pressures applicable to Project according to ASCE/SEI 7, based on heights above grade indicated on Drawings.
 a. Wind Design Data: As indicated on Drawings.
3. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.
4. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.

C. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.

D. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
1. For monolithic-glass lites, properties are based on units with lites 6 mm thick.
2. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
3. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
4. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
5. Visible Reflectance: Center-of-glazing values, according to NFRC 300.
2.3 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.

1. Minimum Glass Thickness for Exterior Lites: 6 mm.
2. Thickness of Tinted Glass: Provide same thickness for each tint color indicated throughout Project.

E. Strength: Where fully tempered float glass is indicated, provide fully tempered float glass.

2.4 GLASS PRODUCTS

A. Float Glass: ASTM C 1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.

B. Fully Tempered Float Glass: ASTM C 1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

2.5 INSULATING GLASS

A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190. Provide comparable product meeting the minimal requirements as stated:

a. Guardian Sunguard, SUNGUARD SNR 43 R100 (2) (Gray+Clear)
 1) Transmittance
 a) Visible Light 22%
 b) Total Solar Energy 10%
 c) U-V 8%
 2) Reflectance
 a) Visible Light-Exterior 10%
b) Visible Light-Interior 13%
c) Solar Energy 19%

3) NFRC U-Value (ARGON)
a) Winter 0.24 Btu/(hr x sqft x °F)1.65 W/(M² x °K)
b) Summer 0.24 Btu/(hr x sqft x °F)1.48 W/(M² x °K)

4) RHG 41
5) Solar Factor (SHGC) 0.17
6) LSG 1.31
7) Acid-Etched Full Panel shall be provided for all glazing units on surface number 2.

2. Sealing System: Dual seal, with manufacturer's standard primary and secondary sealants.
3. Spacer: Manufacturer's standard spacer material and construction.
4. Desiccant: Molecular sieve or silica gel, or a blend of both.

2.6 GLAZING SEALANTS

A. General:

1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.

2.7 GLAZING TAPES

A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:

1. AAMA 804.3 tape, where indicated.
2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.

B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.8 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks: Elastic material with a Shore, Type A durometer hardness of 85, plus or minus 5.

D. Spacers: Elastic blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

E. Edge Blocks: Elastic material of hardness needed to limit glass lateral movement (side walking).

F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

2.9 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 a. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.

C. Grind smooth and polish exposed glass edges and corners.
3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:

1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
2. Presence and functioning of weep systems.
3. Minimum required face and edge clearances.
4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches.
1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.

2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Do not remove release paper from tape until right before each glazing unit is installed.

F. Apply heel bead of elastomeric sealant.

G. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

H. Apply cap bead of elastomeric sealant over exposed edge of tape.
3.5 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.6 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.7 CLEANING AND PROTECTION

A. Immediately after installation remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.

1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.
C. Remove and replace glass that is damaged during construction period.

D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

END OF SECTION 088000
SECTION 096723 - RESINOUS FLOORING

PART I GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This section includes the following:

 1. Resinous flooring system as shown on the drawings and in schedules. The work shall consist of preparation of the substrate, the furnishing and application of a cementitious urethane based self-leveling seamless flooring system with decorative quartz aggregate broadcast and Epoxy broadcast and topcoats.

 2. The system shall have the color and texture as specified by the Owner with a nominal thickness of 1/4 inch. It shall be applied to the prepared area(s) as defined in the plans strictly in accordance with the Manufacturer's recommendations.

 B. Related Work
 1. Division 3 Section Cast-in-place Concrete

1.3 SUBMITTALS
 A. Product Data: Submit manufacturer's technical data, installation instructions, and general recommendations for each resinous flooring material required. Include certification indicating compliance of materials with requirements.

 B. Samples: Submit, for verification purposes, 4-inch square samples of each type of resinous flooring required, applied to a rigid backing, in color and finish indicated.

 1. For initial selection of colors and finishes, submit manufacturer's color charts showing full range of colors and finishes available.

1.4 QUALITY ASSURANCE
 A. Single Source Responsibility: Obtain primary resinous flooring materials including primers, resins, hardening agents, finish or sealing coats from a single manufacturer with not less than ten years of successful experience in manufacturing and installing principal materials described in this section. Contractor shall have completed at least five projects of similar size
and complexity. Provide secondary materials only of type and from source recommended by manufacturer of primary materials.

B. Pre-Installation Conference
 1. General contractor shall arrange a meeting not less than thirty days prior to starting work.
 2. Attendance
 a. General Contractor
 b. Architect/Owner's Representative
 c. Manufacturer/Installer's Representative

C. ISO 9002: All materials, including primers, resins, curing agents, finish coats, aggregates and sealants are manufactured and tested under an ISO 9002 registered quality system.

1. 5 DELIVERY, STORAGE AND HANDLING
 A. Material shall be delivered to job site and checked by flooring contractor for completeness and shipping damage prior to job start.
 B. All materials used shall be factory pre-weighed and pre-packaged in single, easy to manage batches to eliminate on site mixing errors. No on site weighing or volumetric measurements allowed.
 C. Material shall be stored in a dry, enclosed area protected from exposure to moisture. Temperature of storage area shall be maintained between 60 and 85°F/16 and 30°C.

1. 6 PROJECT CONDITIONS
 A. Application may proceed while air, material and substrate temperatures are between 60 F and 85 F providing the substrate temperature is above the dew point. Outside of this range, the Manufacturer shall be consulted.
 B. The relative humidity in the specific location of the application shall be less than 85 % and the surface temperature shall be at least 5 F above the dew point.
 C. The Applicator shall ensure that adequate ventilation is available for the work area. This shall include the use of manufacturer’s approved fans, smooth bore tubing and closure of the work area.
 D. The Applicator shall be supplied with adequate lighting equal to the final lighting level during the preparation and installation of the system.
 E. Concrete shall be moisture cured for a minimum of 3 days and have fully cured a minimum of 5 days in accordance with ACI-308 prior to the application of the coating system pending moisture tests.
F. Concrete shall have a flat rubbed finish, float or light steel trowel finish (a hard steel trowel finish is neither necessary nor desirable).

G. Sealers and curing agents should not be used.

H. Concrete shall have minimum design strength of 3.500 psi. and a maximum water/cement ratio of 0.45

I. Concrete surfaces on grade shall have been constructed with a vapor barrier to protect against the effects of vapor transmission and possible delamination of the system.

J. All open flames and spark-producing equipment shall be removed from the work area prior to commencement of application.

K. Job area to be free of other trades during, and for a period of 24 hours, after floor installation.

L. Protection of finished floor from damage by subsequent trades shall be the responsibility of the General Contractor.

1.7 WARRANTY

A. Manufacturer shall furnish a single, written warranty covering both material and workmanship for a period of one (1) full year from date of installation.

PART II PRODUCTS

2.1 COLORS

A. Colors: As scheduled on the drawings.

2.2 EPOXY FLOORING

A. Resinous Flooring System: Abrasion-, impact-, and chemical-resistant, aggregate-filled, resin-based monolithic floor surfacing designed to produce a seamless floor.

B. Source Limitations: Obtain primary resinous flooring materials, including primers, resins, hardening agents, grouting coats, and topcoats, from single source from single manufacturer. Obtain secondary materials, including patching and fill material, joint sealant, and repair materials, of type and from manufacturer recommended in writing by manufacturer of primary materials.

 1. System Materials:
 b. The broadcast aggregate shall be Dur-A-Flex, Inc. Q28 or Q11 quartz aggregate.

2. Patch Materials

C. Physical Properties: Provide flooring system in which physical properties of topping including aggregate, when tested in accordance with standards or procedures referenced below, are as follows:

1. Topping Poly-Crete SL
 a. Percent Reactive 100 %
 b. VOC 0 g/L
 c. Bond Strength to Concrete ASTM D 4541 400 psi, substrates fails
 d. Compressive Strength, ASTM C 579 9,000 psi
 e. Tensile Strength, ASTM D 638 2,175 psi
 f. Flexural Strength, ASTM D 790 5,076 psi
 g. Impact Resistance @ 125 mils, MIL D-3134, 160 inch lbs

 No visible damage or deterioration

2. Broadcast Coat Dur-A-Glaze #4 Resin
 a. Percent Reactive, 100 %
 b. VOC <4 g/L
 c. Water Absorption, ASTM D 570 0.04%
 d. Tensile Strength, ASTM D 638 4000psi
 e. Coefficient of thermal expansion
 ASTM D 696, 2 x 10-5 in/in/F
 f. Flammability ASTM D-635 Self-Extinguishing
 g. Flame Spread/ NFPA 101 ASTM E-84 Class A
3. Topcoat Armor Top

a. VOC 0 g/L
 b. 60 Degree Gloss ASTM D523 75+/-5
 c. Mixed Viscosity, (Brookfield 25oC) 500 cps
 d. Tensile strength, ASTM D 638 7,000 psi
 e. Abrasion Resistance, ASTM D4060 Gloss Satin
 CS 17 wheel (1,000 g load) 1,000 cycles 4 8 mg loss with grit
 10 12 mg loss without grit
 f. Pot life @ 70o F 50% RH 2 hours
 g. Full Chemical resistance 7 days

2. 3 JOINT SEALANT MATERIALS

 A. Type produced by manufacturer of resinous flooring system for type of service and joint condition indicated.

PART III EXECUTION

3.01 EXAMINATION

 A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resinous flooring systems.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

 A. New and existing concrete surfaces shall be free of oil, grease, curing compounds, loose particles, moss, algae growth, laitance, friable matter, dirt, and bituminous products.
 B. Moisture Testing: Perform tests recommended by manufacturer and as follows.
 1. Perform anhydrous calcium chloride test ASTM F 1869-98. Application will proceed only when the vapor/moisture emission rates from the slab is less than and not higher than 20 lbs/1,000 sf/24 hrs.
 2. Perform relative humidity test using is situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 99% relative humidity level measurement.
3. If the vapor drive exceeds 99% relative humidity or 20 lbs/1,000 sf/24 hrs then the Owner and/or Engineer shall be notified and advised of additional cost for the possible installation of a vapor mitigation system that has been approved by the manufacturer or other means to lower the value to the acceptable limit.

C. Mechanical surface preparation

1. Shot blast all surfaces to receive flooring system with a mobile steel shot, dust recycling machine (Blastrac or equal). All surface and embedded accumulations of paint, toppings hardened concrete layers, laitance, power trowel finishes and other similar surface characteristics shall be completely removed leaving a bare concrete surface having a minimum profile of CSP 4-5 as described by the International Concrete Repair Institute.

2. Floor areas inaccessible to the mobile blast machines shall be mechanically abraded to the same degree of cleanliness, soundness and profile using diamond grinders, needle guns, bush hammers, or other suitable equipment.

3. Where the perimeter of the substrate to be coated is not adjacent to a wall or curb, a minimum 1/4 inch key cut shall be made to properly seat the system, providing a smooth transition between areas. The detail cut shall also apply to drain perimeters and expansion joint edges.

4. Cracks and joints (non-moving) greater than 1/8 inch wide are to be chiseled or chipped-out and repaired per manufacturer’s recommendations.

5. At spalled or worn areas, mechanically remove loose or delaminated concrete to a sound concrete and patch per manufactures recommendations.

3.03 APPLICATION

A. General.

1. The system shall be applied in five distinct steps as listed below:
 a. Substrate preparation
 b. Topping/overlay application with quartz aggregate broadcast.
 c. Resin application with quartz aggregate broadcast.
 d. Topcoat application
 e. Second topcoat application.

2. Immediately prior to the application of any component of the system, the surface shall be dry and any remaining dust or loose particles shall be removed using a vacuum or clean, dry, oil-free compressed air.

3. The handling, mixing and addition of components shall be performed in a safe manner to achieve the desired results in accordance with the Manufacturer's recommendations.

4. The system shall follow the contour of the substrate unless pitching or other leveling work has been specified by the Architect.

5. A neat finish with well-defined boundaries and straight edges shall be provided by the Applicator.
B. Topping

1. The topping shall be applied as a self-leveling system as specified by the Architect. The topping shall be applied in one lift with a nominal thickness of 1/8 inch.

2. The topping shall be comprised of three components, a resin, hardener and filler as supplied by the Manufacturer.

3. The hardener shall be added to the resin and thoroughly dispersed by suitably approved mechanical means. SL Aggregate shall then be added to the catalyzed mixture and mixed in a manner to achieve a homogenous blend.

4. The topping shall be applied over horizontal surfaces using ½ inch “v” notched squeegee, trowels or other systems approved by the Manufacturer.

5. Immediately upon placing, the topping shall be degassed with a loop roller.

6. Quartz aggregate shall be broadcast to excess into the wet material at the rate of 0.8 lbs/sf.

7. Allow material to fully cure. Vacuum, sweep and/or blow to remove all loose aggregate.

C. Broadcast

1. The broadcast coat resin shall be applied at the rate of 90 sf/gal (Q28) or 50 sf/gal (Q11).

2. The broadcast coat shall be comprised of liquid components, combined at a ratio of 2 parts resin to 1 part hardener by volume and shall be thoroughly blended by mechanical means such as a high speed paddle mixer.

3. Quartz aggregate shall be broadcast into the wet resin at the rate of 0.5 lbs/sf.

4. Allow material to fully cure. Vacuum, sweep and/or blow to remove all loose aggregate.

D. Grout coat

1. Orange-peel texture is desired, sand screen the floor and apply a second grout coat of epoxy. The epoxy shall be applied by squeegee and back-roll with a coverage rate of 200 sf/gal (Q28) or 70 sf/gal (Q11).

2. The grout coat shall be comprised of liquid components, combined at a ratio of 2 parts resin to 1 part hardener by volume and shall be thoroughly blended by mechanical means such as a high-speed paddle mixer.

3. The grout coat will be back rolled and cross rolled to provide a uniform texture and finish.
E. Topcoat

1. The topcoat shall be roller applier with a coverage rate of 500 sf/gal.
2. The finished floor will have a nominal thickness of 1/4 inch.

3.04 FIELD QUALITY CONTROL

A. The right is reserved to invoke the following material testing procedure at any time, and any number of times during period of flooring application.

B. The Owner will engage service of an independent testing laboratory to sample materials being used on the job site. Samples of material will be taken, identified and sealed, and certified in presence of Contractor.

C. Testing laboratory will perform tests for any of characteristics specified, using applicable testing procedures referenced herein, or if none referenced, in manufacturer's product data.

D. If test results show materials being used do not comply with specified requirements, Contractor may be directed by Owner to stop work; remove non-complying materials; pay for testing; reapply flooring materials to properly prepared surfaces which had previously been coated with unacceptable materials.

3.05 CURING, PROTECTION AND CLEANING

A. Cure resinous flooring materials in compliance with manufacturer's directions, taking care to prevent contamination during stages of application and prior to completion of curing process. Close area of application for a minimum of 24 hours.

B. Protect resinous flooring materials from damage and wear during construction operation – before, after, and during final finishing. Where temporary covering is required for this purpose, comply with manufacturer's recommendations for protective materials and method of application. General Contractor is responsible for protection and cleaning of surfaces after final coats. Gauges, dents, breaks, exposed concrete surfaces, subject to replacement.

C. Cleaning: Remove temporary covering and clean resinous flooring just prior to final inspection. Use cleaning materials and procedures recommended by resinous flooring manufacturer.

END OF SECTION 096723
SECTION 099113 - EXTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on the following exterior substrates:
1. Concrete masonry units (CMUs).
2. Steel and iron.
4. Wood.

B. Related Requirements:
1. Section 055000 "Metal Fabrications" for shop priming metal fabrications.
2. Section 055213 "Pipe and Tube Railings" for shop priming pipe and tube railings.

1.3 DEFINITIONS

A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
B. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
C. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
D. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
E. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
F. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.
 1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
2. Indicate VOC content.

B. Samples for Initial Selection: For each type of topcoat product.

C. Samples for Verification: For each type of paint system and each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

D. Product List: Cross-reference to paint system and locations of application areas. Use same
designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are
 packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient
temperatures continuously maintained at not less than 45 deg F.
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are
 between 50 and 95 deg F.

B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at
temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 2. Benjamin Moore & Co.
 3. Dulux (formerly ICI Paints); a brand of AkzoNobel.
6. PPG Architectural Finishes, Inc.
7. Pratt & Lambert.
8. Sherwin-Williams Company (The).

B. Products: Subject to compliance with requirements, listed in the Exterior Painting Schedule for the paint category indicated.

2.2 PAINT, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

C. Colors: As indicated in a color schedule.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 2. Fiber-Cement Board: 12 percent.
 3. Masonry (Clay and CMUs): 12 percent.
 5. Portland Cement Plaster: 12 percent.
 6. Gypsum Board: 12 percent.

C. Portland Cement Plaster Substrates: Verify that plaster is fully cured.

D. Exterior Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

E. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
F. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.

E. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.

F. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer.

G. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

H. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

I. Wood Substrates:
 1. Scrape and clean knots. Before applying primer, apply coat of knot sealer recommended in writing by topcoat manufacturer for exterior use in paint system indicated.
 2. Sand surfaces that will be exposed to view, and dust off.
 3. Prime edges, ends, faces, undersides, and backsides of wood.
 4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.
J. Plastic Trim Fabrication Substrates: Remove dust, dirt, and other foreign material that might impair bond of paints to substrates.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."

1. Use applicators and techniques suited for paint and substrate indicated.
2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.
3. Paint both sides and edges of exterior doors and entire exposed surface of exterior door frames.
4. Paint entire exposed surface of window frames and sashes.
5. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
6. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.

1. Contractor shall touch up and restore painted surfaces damaged by testing.
2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 EXTERIOR PAINTING SCHEDULE

A. Concrete and CMU Substrates, Nontraffic Surfaces:

1. Latex System MPI EXT 3.1A. (coatings shall be appropriate to achieve non-pin hole applications at CMU)
 a. Prime Coat: Primer, alkali resistant, water based, MPI #3.
 d. Topcoat: Latex, exterior, low sheen (MPI Gloss Level 3-4), MPI #15.

B. Cement Board Substrates:

1. Latex System MPI EXT 3.3A:
 b. Prime Coat: Primer, alkali resistant, water based, MPI #3.
 d. Topcoat: Latex, exterior, low sheen (MPI Gloss Level 3-4), MPI #15.

C. Steel and Iron Substrates:

1. Alkyd System MPI EXT 5.1D:
 a. Prime Coat: Shop primer specified in Section where substrate is specified.
 c. Topcoat: Alkyd, exterior, semi-gloss (MPI Gloss Level 5), MPI #94.

D. Galvanized-Metal Substrates:

1. Alkyd System MPI EXT 5.3B:
 c. Topcoat: Alkyd, exterior, semi-gloss (MPI Gloss Level 5), MPI #94.
E. Wood Substrates: Wood-based panel products.

1. Latex over Latex Primer System MPI EXT 6.4K:
 c. Topcoat: Latex, exterior, low sheen (MPI Gloss Level 3-4), MPI #15.

END OF SECTION 099113
SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems the following interior
 substrates:
 1. Steel.
 2. Galvanized metal.
 3. Wood.

B. Related Requirements:
 1. Section 051200 "Structural Steel Framing" for shop priming of metal substrates with
 primers specified in this Section.
 2. Section 099113 "Exterior Painting" for surface preparation and the application of paint
 systems on exterior substrates.

1.3 DEFINITIONS

A. Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to
 ASTM D 523.

B. Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according
 to ASTM D 523.

C. Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to
 ASTM D 523.

D. Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according
 to ASTM D 523.

E. Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.

F. Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.

G. Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Step coats on Samples to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

C. Product List: For each product indicated, include the following:
 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
 2. Printout of current "MPI Approved Products List" for each product category specified in Part 2, with the proposed product highlighted.
 3. VOC content.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Refer to Specification Section 018000.

1.6 QUALITY ASSURANCE

A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

 1. Architect will select one surface to represent surfaces and conditions for application of each paint system specified in Part 3.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 b. Other Items: Architect will designate items or areas required.

 2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.

 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Benjamin Moore & Co.
 4. Coronado Paint.
 5. Duron, Inc.
 6. ICI Paints.
 9. PPG Architectural Finishes, Inc.

2.2 PAINT, GENERAL

A. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."

B. Material Compatibility:
 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

C. Colors: As selected and scheduled on Drawings.
2.3 BLOCK FILLERS
 A. Block Filler, Latex, Interior/Exterior: MPI #4.

2.4 PRIMERS/SEALERS
 A. Primer Sealer, Latex, Interior: MPI #50.
 B. Primer Sealer, Interior, Institutional Low Odor/VOC: MPI #149.
 C. Primer, Latex, for Interior Wood: MPI #39.
 D. Primer Sealer, Alkyd, Interior: MPI #45.

2.5 METAL PRIMERS
 A. Primer, Alkyd, Quick Dry, for Metal: MPI #76.

2.6 WATER-BASED PAINTS
 A. Latex, Interior, (Gloss Level 3): MPI #52.
 B. Latex, Interior, Gloss, (Gloss Level 6, except minimum gloss of 65 units at 60 degrees): MPI #114.

2.7 SOLVENT-BASED PAINTS
 A. Alkyd, Interior, Flat (Gloss Level 1): MPI #49.
 B. Alkyd, Interior, Semi-Gloss (Gloss Level 5): MPI #47.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 3. Wood: 15 percent.
 C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.

E. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceed that permitted in manufacturer's written instructions.

F. Steel Substrates: Remove rust, loose mill scale, and shop primer, if any. Clean using methods recommended in writing by paint manufacturer.

G. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

H. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal fabricated from coil stock by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

I. Wood Substrates:
 1. Scrape and clean knots, and apply coat of knot sealer before applying primer.
 2. Sand surfaces that will be exposed to view, and dust off.
 3. Prime edges, ends, faces, undersides, and backsides of wood.
 4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.
3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."

1. Use applicators and techniques suited for paint and substrate indicated.
2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:

1. Paint the following work where exposed in equipment rooms:
 a. Equipment, including panelboards and switch gear.
 b. Uninsulated metal piping.
 c. Uninsulated plastic piping.
 d. Pipe hangers and supports.
 e. Tanks that do not have factory-applied final finishes.
 f. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.

2. Paint the following work where exposed in occupied spaces:
 a. Equipment, including panelboards.
 b. Uninsulated metal piping.
 c. Uninsulated plastic piping.
 d. Pipe hangers and supports.
 e. Metal conduit.
 f. Plastic conduit.
 g. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 h. Other items as directed by Architect.
3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 INTERIOR PAINTING SCHEDULE

A. Steel Substrates:

1. Latex over Alkyd Primer System:
 a. Prime Coat: Primer, alkyd, quick dry, for metal, MPI #76.
 c. Topcoat: Latex, interior, (Gloss Level 3), MPI #52.

2. Alkyd System:
 a. Prime Coat: Primer, alkyd, anti-corrosive, for metal, MPI #79.
 c. Topcoat: Alkyd, interior, (Gloss Level 3), MPI #51.

3. Quick-Drying Enamel System:
 a. Prime Coat: Primer, alkyd, quick dry, for metal, MPI #76.
 c. Topcoat: Alkyd, quick dry, semi-gloss (Gloss Level 5), MPI #81.

B. Wood Substrates:

1. Latex System:
 a. Prime Coat: Primer, latex, for interior wood, MPI #39.
 c. Topcoat: Latex, interior, (Gloss Level 3), MPI #52.
SECTION 099300 - STAINING AND TRANSPARENT FINISHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and application of wood stains and transparent finishes.

1. Interior Substrates:
 a. Dressed lumber (finish carpentry or woodwork).
 b. Tongue/Groove Ceilings

2. Exterior Substrates:
 a. Tongue/Groove Soffits

1.3 DEFINITIONS

A. MPI Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.

B. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.

C. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.

D. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.

E. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

 1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 2. Indicate VOC content.
B. Samples for Initial Selection: For each type of product.

C. Samples for Verification: For each type of finish system and in each color and gloss of finish required.
 1. Submit Samples on representative samples of actual wood substrates, 8 inches square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

D. Product List: Cross-reference to finish system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 QUALITY ASSURANCE

A. Mockups: Apply mockups of each finish system indicated and each color selected to verify preliminary selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 1. Architect will select one surface to represent surfaces and conditions for application of each type of finish system and substrate.
 2. Final approval of stain color selections will be based on mockups.
 a. If preliminary stain color selections are not approved, apply additional mockups of additional stain colors selected by Architect at no added cost to Owner.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

A. Apply finishes only when temperature of surfaces to be finished and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply finishes when relative humidity exceeds 85 percent, at temperatures less than 5 deg F above the dew point, or to damp or wet surfaces.

C. Do not apply exterior finishes in snow, rain, fog, or mist.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Benjamin Moore & Co.
4. Kwal Paint; Comex Group.
5. Lenmar Lacquers; Benjamin Moore & Co.
7. PPG Architectural Coatings.

2.2 MATERIALS, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products List."

B. Material Compatibility:

1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, products shall be recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

C. Stain Colors: As selected to match Architect provide sample as noted on sheet A121 Scheduled Finishes. Color shall match other wood within the building.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Interior Wood Substrates: 15 percent, when measured with an electronic moisture meter.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Proceed with finish application only after unsatisfactory conditions have been corrected.
1. Beginning finish application constitutes Contractor's acceptance of substrates and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and finishing.

1. After completing finishing operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean and prepare surfaces to be finished according to manufacturer's written instructions for each substrate condition and as specified.

1. Remove dust, dirt, oil, and grease by washing with a detergent solution; rinse thoroughly with clean water and allow to dry. Remove grade stamps and pencil marks by sanding lightly. Remove loose wood fibers by brushing.
2. Remove mildew by scrubbing with a commercial wash formulated for mildew removal and as recommended by stain manufacturer.

D. Interior Wood Substrates:

1. Scrape and clean knots, and apply coat of knot sealer before applying primer.
2. Apply wood filler paste to open-grain woods, as defined in "MPI Architectural Painting Specification Manual," to produce smooth, glasslike finish.
3. Sand surfaces exposed to view and dust off.
4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dry.

3.3 APPLICATION

A. Apply finishes according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."

1. Use applicators and techniques suited for finish and substrate indicated.
2. Finish surfaces behind movable equipment and furniture same as similar exposed surfaces.
3. Do not apply finishes over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

B. Apply finishes to produce surface films without cloudiness, holidays, lap marks, brush marks, runs, ropiness, or other surface imperfections.
3.4 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing finish application, clean spattered surfaces. Remove spattered materials by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from finish application. Correct damage by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced finished wood surfaces.

3.5 INTERIOR WOOD -FINISH-SYSTEM SCHEDULE

A. Wood Substrates: Architectural woodwork, Doors.

1. Polyurethane Varnish over Stain System MPI INT 6.3E:
 a. Stain Coat: Stain, semitransparent, for interior wood, MPI #90.
 d. Topcoat: Varnish, interior, polyurethane, oil modified, satin (MPI Gloss Level 4), MPI #57.

END OF SECTION 099300
SECTION 101423 - PANEL SIGNAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Room-identification Panel signs.

1.3 DEFINITIONS
A. Accessible: In accordance with the Texas Accessibility Standards (TAS).

1.4 COORDINATION
A. Furnish templates for placement of sign-anchorage devices embedded in permanent construction by other installers.
B. Furnish templates for placement of electrical service embedded in permanent construction by other installers.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For panel signs.
1. Include fabrication and installation details and attachments to other work.
2. Show sign mounting heights, locations of supplementary supports to be provided by others, and accessories.
3. Show message list, typestyles, graphic elements, including raised characters and Braille, and layout for each sign at least half size.
C. Samples for Initial Selection: For each type of sign assembly, exposed component, and exposed finish.
1. Include representative Samples of available typestyles and graphic symbols.
D. Samples for Verification: For each type of sign assembly showing all components and with the required finish(es), in manufacturer's standard size unless otherwise indicated and as follows:
 1. Room-Identification Signs: Full-size Sample.
 2. Variable Component Materials: Full-size Sample of each base material, character (letter, number, and graphic element) in each exposed color and finish not included in Samples above.
 3. Exposed Accessories: Full-size Sample of each accessory type.

E. Sign Schedule: Use same designations specified or indicated on Drawings or in a sign schedule.

1.6 INFORMATIONAL SUBMITTALS

 A. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

 A. Maintenance Data: For signs to include in maintenance manuals.

1.8 QUALITY ASSURANCE

 A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.9 WARRANTY

 A. Special Warranty: Manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:

 a. Deterioration of finishes beyond normal weathering.
 b. Deterioration of embedded graphic image.
 c. Separation or delamination of sheet materials and components.

 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

 A. Accessibility Standard: Comply with applicable provisions in Texas Accessibility Standards (TAS) for signs.
2.2 SIGNS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ace Sign Systems, Inc.
2. Advance Corporation; Braille-Tac Division.
3. Allen Industries, Inc.
5. APCO Graphics, Inc.
6. ASE, Inc.
7. ASI Sign Systems, Inc.
8. Best Sign Systems Inc.
12. Vista System.
13. Vomar Products, Inc.

B. Room-Identification Sign: Sign with smooth, uniform surfaces; with message and characters having uniform faces, sharp corners, and precisely formed lines and profiles; and as follows:

1. Solid-Sheet Sign Returns, and Back: **Aluminum** with finish specified in "Surface Finish" Subparagraph and as follows:
 a. Thickness: 0.25 inch (6.35 mm)
 c. Etched and Filled Graphics: Sign face etched or routed to receive enamel-paint infill.

 a. Edge Condition: Square Cut.
 b. Corner Condition in Elevation: Square.

3. Mounting: Projecting from wall with countersunk flathead through fasteners. Project minimum 1/4 inch from furthest projected surface.

4. Text and Typeface: Accessible characters and Braille typeface as selected by Architect from manufacturer's full range and variable content as scheduled. Finish characters to contrast with background color, and finish Braille to match background color.

5. Surface Finish
 a. Integral Aluminum Finish: As indicated on drawings.

2.3 PANEL-SIGN MATERIALS

A. Aluminum Sheet and Plate: ASTM B209 (ASTM B209M), alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated.
2.4 ACCESSORIES

A. Fasteners and Anchors: Manufacturer's standard as required for secure anchorage of signage, noncorrosive and compatible with each material joined, and complying with the following:
1. For exterior exposure, furnish nonferrous-metal devices unless otherwise indicated.
2. Exposed Metal-Fastener Components, General:
 a. Fabricated from same basic metal and finish of fastened metal unless otherwise indicated.
 b. Fastener Heads: For nonstructural connections, use oval countersunk screws and bolts with tamper-resistant Allen-head slots unless otherwise indicated.

3. Sign Mounting Fasteners:
 a. Projecting Studs: Threaded studs with sleeve spacer, welded or brazed to back of sign material or screwed into back of sign assembly, unless otherwise indicated.

4. Inserts: Furnish inserts to be set by other trades into concrete or masonry work.

2.5 FABRICATION

A. General: Provide manufacturer's standard sign assemblies according to requirements indicated.

1. Preassemble signs and assemblies in the shop to greatest extent possible. Disassemble signs and assemblies only as necessary for shipping and handling limitations. Clearly mark units for reassembly and installation; apply markings in locations concealed from view after final assembly.
2. Mill joints to a tight, hairline fit. Form assemblies and joints exposed to weather to resist water penetration and retention.
3. Comply with AWS for recommended practices in welding and brazing. Provide welds and brazes behind finished surfaces without distorting or discoloring exposed side. Clean exposed welded and brazed connections of flux, and dress exposed and contact surfaces.
4. Conceal connections if possible; otherwise, locate connections where they are inconspicuous.
5. Internally brace signs for stability and for securing fasteners.
6. Provide rebates, lugs, and brackets necessary to assemble components and to attach to existing work. Drill and tap for required fasteners. Use concealed fasteners where possible; use exposed fasteners that match sign finish.

A. Surface-Engraved Graphics: Machine engrave characters and other graphic devices into indicated sign surface to produce precisely formed copy, incised to uniform depth.

1. Engraved Metal: Fill engraved graphics with manufacturer's standard baked enamel.

B. Sign Message Panels: Construct sign-panel surfaces to be smooth and to remain flat under installed conditions within a tolerance of plus or minus 1/16 inch measured diagonally from corner to corner.
1. Coordinate dimensions and attachment methods to produce message panels with closely fitting joints. Align edges and surfaces with one another in the relationship indicated.
2. Increase panel thickness or reinforce with concealed stiffeners or backing materials as needed to produce surfaces without distortion, buckles, warp, or other surface deformations.
3. Continuously weld joints and seams unless other methods are indicated; grind, fill, and dress welds to produce smooth, flush, exposed surfaces with welds invisible after final finishing.

2.6 GENERAL FINISH REQUIREMENTS

A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

C. Directional Finishes: Run grain with long dimension of each piece and perpendicular to long dimension of finished trim or border surface unless otherwise indicated.

D. Organic, Anodic, and Chemically Produced Finishes: Apply to formed metal after fabrication but before applying contrasting polished finishes on raised features unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of signage work.

B. Verify that sign-support surfaces are within tolerances to accommodate signs without gaps or irregularities between backs of signs and support surfaces unless otherwise indicated.

C. Verify that anchor inserts are correctly sized and located to accommodate signs.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install signs using mounting methods indicated and according to manufacturer's written instructions.

1. Install signs level, plumb, true to line, and at locations and heights indicated, with sign surfaces free of distortion and other defects in appearance.
2. Install signs so they do not protrude or obstruct according to the accessibility standard.
3. Before installation, verify that sign surfaces are clean and free of materials or debris that would impair installation.

B. Room-Identification Signs and Other Accessible Signage: Install in locations on walls according to Texas Accessibility Standards. Provide for one sign each door.

C. Mounting Methods:
 1. Projecting Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 a. Masonry Substrates: Fill holes with adhesive. Leave recess space in hole for displaced adhesive. Place spacers on studs, place sign in position, and push until spacers are pinched between sign and substrate, embedding the stud ends in holes. Temporarily support sign in position until adhesive fully sets.
 b. Thin or Hollow Surfaces: Place spacers on studs, place sign in position with spacers pinched between sign and substrate, and install washers and nuts on stud ends projecting through opposite side of surface, and tighten.

3.3 ADJUSTING AND CLEANING
 A. Remove and replace damaged or deformed signs and signs that do not comply with specified requirements. Replace signs with damaged or deteriorated finishes or components that cannot be successfully repaired by finish touchup or similar minor repair procedures.
 B. Remove temporary protective coverings and strippable films as signs are installed.
 C. On completion of installation, clean exposed surfaces of signs according to manufacturer's written instructions, and touch up minor nicks and abrasions in finish. Maintain signs in a clean condition during construction and protect from damage until acceptance by Owner.

END OF SECTION 101423
SECTION 102113.14 - STAINLESS-STEEL TOILET COMPARTMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes stainless-steel toilet compartments configured as toilet enclosures, entrance screens and urinal screens.

B. Related Requirements:
 1. Section 061000 "Rough Carpentry" for blocking overhead support of floor-and-ceiling-anchored compartments.
 2. Section 102800 "Toilet, Bath, and Laundry Accessories" for toilet tissue dispensers, grab bars, purse shelves, and similar accessories mounted on toilet compartments.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for toilet compartments.

B. Shop Drawings: For toilet compartments.
 1. Include plans, elevations, sections, details, and attachment details.
 2. Show locations of cutouts for compartment-mounted toilet accessories.
 3. Show locations of reinforcements for compartment-mounted grab bars and locations of blocking for surface-mounted toilet accessories.
 4. Show locations of centerlines of toilet fixtures.
 5. Show locations of floor drains.
 6. Show overhead bracing locations.

C. Samples for Initial Selection: For each type of toilet compartment material indicated.
 1. Include Samples of hardware and accessories involving material and color selection.

D. Samples for Verification: For the following products, in manufacturer's standard sizes unless otherwise indicated:
 1. Each type of material, color, and finish required for toilet compartments, prepared on 6-inch- (152-mm-) square Samples of same thickness and material indicated for Work.
2. Each type of hardware and accessory.

E. Product Schedule: For toilet compartments, prepared by or under the supervision of supplier, detailing location and selected colors for toilet compartment material.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of toilet compartment.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For toilet compartments to include in maintenance manuals.

1.6 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of toilet fixtures, walls, columns, ceilings, and other construction contiguous with toilet compartments by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and Texas Accessibility Standards (TAS) for toilet compartments designated as accessible.

2.2 STAINLESS-STEEL TOILET COMPARTMENTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Accurate Partitions Corp.; ASI Group.
2. AJW Architectural Products.
3. All American Metal Corp.
5. Ampco Products, LLC.
7. Flush Metal Partition, LLC.
10. Hadrian Manufacturing Inc.
12. Marlite.
13. Metpar Corp.

B. Toilet-Enclosure Style: Overhead braced, Floor anchored.

C. Door, Panel, and Pilaster Construction: Seamless, metal facing sheets pressure laminated to core material; with continuous, interlocking molding strip or lapped-and-formed edge closures; corners secured by welding or clips and exposed welds ground smooth. Provide with no-sightline system. Exposed surfaces shall be free of pitting, seam marks, roller marks, stains, discolorations, telegraphing of core material, or other imperfections.

1. Core Material: Manufacturer's standard sound-deadening honeycomb of resin-impregnated kraft paper in thickness required to provide finished thickness of 1 inch (25 mm) for doors and panels and 1-1/4 inches (32 mm) for pilasters.

2. Grab-Bar Reinforcement: Provide concealed internal reinforcement for grab bars mounted on units of size and material adequate for panel to withstand applied downward load on grab bar of at least 250 lbf (1112 N), when tested according to ASTM F 446, without deformation of panel.

3. Tapping Reinforcement: Provide concealed reinforcement for tapping (threading) at locations where machine screws are used for attaching items to units.

D. Facing Sheets and Closures: Stainless-steel sheet of nominal thicknesses as follows:

1. Pilasters, Braced at Both Ends: Manufacturer's standard thickness, but not less than 0.038 inch (0.95 mm).

2. Panels: Manufacturer's standard thickness, but not less than 0.031 inch (0.79 mm).

3. Doors: Manufacturer's standard thickness, but not less than 0.031 inch (0.79 mm).

4. Flat-Panel Urinal Screens: Thickness matching the panels.

5. Integral-Flange, Wall-Hung Urinal Screens: Manufacturer's standard thickness, but not less than 0.031 inch (0.79 mm).

E. Pilaster Shoes and Sleeves (Caps): Stainless-steel sheet, not less than 0.031-inch (0.79-mm) nominal thickness and 3 inches (76 mm) high, finished to match hardware.

F. Brackets (Fittings):

1. Full-Height (Continuous) Type: Manufacturer's standard design; stainless steel.

G. Stainless-Steel Finish: Vandal-resistant, diamond texture

2.3 HARDWARE AND ACCESSORIES

A. Hardware and Accessories: Manufacturer's standard operating hardware and accessories.

2. Hinges: Manufacturer's standard continuous, cam type that swings to a closed or partially open position.

3. Latch and Keeper: Manufacturer's standard surface-mounted latch unit designed for emergency access and with combination rubber-faced door strike and keeper. Provide units that comply with regulatory requirements for accessibility at compartments designated as accessible.
4. Coat Hook: Manufacturer's standard combination hook and rubber-tipped bumper, sized to prevent in-swinging door from hitting compartment-mounted accessories.

5. Door Bumper: Manufacturer's standard rubber-tipped bumper at out-swinging doors.

6. Door Pull: Manufacturer's standard unit at out-swinging doors that complies with regulatory requirements for accessibility. Provide units on both sides of doors at compartments designated as accessible.

B. Overhead Bracing: Manufacturer's standard continuous, extruded-aluminum head rail with antigrip profile and in manufacturer's standard finish.

C. Anchorages and Fasteners: Manufacturer's standard exposed fasteners of stainless steel, finished to match the items they are securing, with theft-resistant-type heads. Provide sex-type bolts for through-bolt applications. For concealed anchors, use stainless-steel, hot-dip galvanized-steel, or other rust-resistant, protective-coated steel anchors compatible with related materials.

2.4 MATERIALS

A. Aluminum Castings: ASTM B 26/B 26M.

B. Aluminum Extrusions: ASTM B 221 (ASTM B 221M).

C. Brass Castings: ASTM B 584.

D. Brass Extrusions: ASTM B 455.

E. Stainless-Steel Sheet: ASTM A 666, Type 304, stretcher-leveled standard of flatness.

F. Stainless-Steel Castings: ASTM A 743/A 743M.

G. Zamac: ASTM B 86, commercial zinc-alloy die castings.

2.5 FABRICATION

A. Fabrication, General: Fabricate toilet compartment components to sizes indicated. Coordinate requirements and provide cutouts for through-partition toilet accessories and solid blocking within panel where required for attachment of toilet accessories.

B. Overhead-Braced Units: Provide manufacturer's standard corrosion-resistant supports, leveling mechanism, and anchors at pilasters to suit floor conditions. Provide shoes at pilasters to conceal supports and leveling mechanism.

C. Urinal-Screen Posts: Provide manufacturer's standard corrosion-resistant anchoring assemblies with leveling adjustment nuts at[tops and] bottoms of posts. Provide shoes [and sleeves (caps)] at posts to conceal anchorage.

D. Door Size and Swings: Unless otherwise indicated, provide 24-inch- (610-mm-) wide in-swinging doors for standard toilet compartments and 36-inch- (914-mm-) wide out-swinging doors with a minimum 32-inch- (813-mm-) wide clear opening for compartments designated as accessible.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for fastening, support, alignment, operating clearances, and other conditions affecting performance of the Work.

1. Confirm location and adequacy of blocking and supports required for installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Comply with manufacturer's written installation instructions. Install units rigid, straight, level, and plumb. Secure units in position with manufacturer's recommended anchoring devices.

1. Maximum Clearances:
 a. Pilasters and Panels: 1/2 inch (13 mm).
 b. Panels and Walls: 1 inch (25 mm).

2. Full-Height (Continuous) Brackets: Secure panels to walls and to pilasters with full-height brackets.
 a. Locate bracket fasteners so holes for wall anchors occur in masonry or tile joints.
 b. Align brackets at pilasters with brackets at walls.

B. Overhead-Braced Units: Secure pilasters to floor and level, plumb, and tighten. Set pilasters with anchors penetrating not less than 1-3/4 inches (44 mm) into structural floor unless otherwise indicated in manufacturer's written instructions. Secure continuous head rail to each pilaster with no fewer than two fasteners. Hang doors to align tops of doors with tops of panels, and adjust so tops of doors are parallel with overhead brace when doors are in closed position.

C. Floor-Anchored Units: Set pilasters with anchors penetrating not less than 2 inches (51 mm) into structural floor unless otherwise indicated in manufacturer's written instructions. Level, plumb, and tighten pilasters. Hang doors and adjust so tops of doors are level with tops of pilasters when doors are in closed position.

D. Urinal Screens: Attach with anchoring devices to suit supporting structure. Set units level and plumb, rigid, and secured to resist lateral impact.

3.3 ADJUSTING

A. Hardware Adjustment: Adjust and lubricate hardware according to hardware manufacturer's written instructions for proper operation. Set hinges on in-swinging doors to hold doors open
approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors to return doors to fully closed position.

END OF SECTION 102113.14
SECTION 102800 - TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Miscellaneous Accessories.

B. Related Sections:
 1. Section 088300 "Mirrors" for frameless mirrors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include the following:
 1. Construction details and dimensions.
 2. Anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
 3. Material and finish descriptions.
 4. Features that will be included for Project.
 5. Manufacturer's warranty.

B. Samples: Full size, for each accessory item to verify design, operation, and finish requirements.
 1. Approved full-size Samples will be returned and may be used in the Work.

C. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
 1. Identify locations using room designations indicated.
 2. Identify products using designations indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.
1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For toilet and bath accessories to include in maintenance manuals.

1.6 QUALITY ASSURANCE
 A. Source Limitations: For products listed together in the same Part 2 articles, obtain products from single source from single manufacturer.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 COORDINATION
 A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.
 B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.8 WARRANTY
 A. Special Mirror Warranty: Manufacturer's standard form in which manufacturer agrees to replace mirrors that develop visible silver spoilage defects and that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Stainless Steel: ASTM A 666, Type 304, 0.031-inch minimum nominal thickness unless otherwise indicated.
 B. Steel Sheet: ASTM A 1008/A 1008M, Designation CS (cold rolled, commercial steel), 0.036-inch minimum nominal thickness.
 C. Galvanized-Steel Sheet: ASTM A 653/A 653M, with G60 hot-dip zinc coating.
 E. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.
F. Chrome Plating: ASTM B 456, Service Condition Number SC 2 (moderate service).

G. Mirrors: ASTM C 1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.2 WASHROOM ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Toilet Tissue (Multi Roll) Dispenser:
 2. Material: Plastic - Black
 3. Capacity: 2 rolls
 4. Mounting: Surface, meet TAS requirements.

C. Liquid-Soap Dispenser (Wall mounted only - verify locations with Architect prior to providing this unit)
 1. Basis-of-Design Product: Gojo-Skilcraft ADX-12 Dispenser
 2. Description: Designed for dispensing soap in liquid form.
 4. Material and Finish: – Black/Chrome
 5. Capacity: 40 fl-oz.
 6. Provide at each lavatory/sink location.

D. Grab Bars(two sizes):
 1. Basis-of-Design Product: Bobrick #B6806x36 (GB2) and #B-6806x42 (GB1).
 2. Mounting: Flanges with concealed fasteners, Snap Flange
 3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin).

E. Sanitary-Napkin Disposal Unit: (locate at each female stall)
 3. Door or Cover: Self-closing, disposal-opening cover.
 5. Material and Finish: Stainless steel, No. 4 finish (satin).

F. Clothes Hook:
 1. Description: Equal to Bobrick B-2116.
3. Locate one on the inside face of each toilet partition door and two at shower partition wall adjacent to bench, see drawings for locations. Provide two at each family restroom adjacent to bench, see drawings for location.

G. Mirror 24”x48”: (provide 3 at each Men and Women lavatory and 1 each Family Restroom)
 1. Basis-of-Design Product: Bradley, Model 7481
 2. Frame: Metal Edge, Schluter Jolly, all sides.

H. Mirror 36”x48”: (provide one at Men and Women lavatory)
 1. Basis-of-Design Product: Bradley, Model 7481
 2. Frame: Metal Edge, Schluter Jolly, all sides.

I. Under lavatory Guard: (locate at each accessible lavatory where exposed condition of piping occurs)
 2. Description: Insulating pipe covering for supply and drain piping assemblies that prevent direct contact with and burns from piping; allow service access without removing coverings.
 3. Material and Finish: Antimicrobial, molded plastic, white
 4. Provide at all exposed piping per TAS requirements.

J. Mop and Broom Holder (locate at each mop sink)
 1. Basis-of-Design Product: Bobrick B-223x24
 2. Description: Unit with shelf, hooks, holders, and rod suspended beneath shelf.
 3. Length: 24 inches.
 5. Mop/Broom Holders: Four, spring-loaded, rubber hat, cam type.
 7. Shelf: Not less than nominal 0.05-inch- thick stainless steel.
 8. Rod: Approximately 1/4-inch- diameter stainless steel.

K. Semi-Recessed Waste Receptacle
 1. Basis-of-Design Product: Bradley 344-10
 2. Description: 12 Gallon Waste Receptacle
 3. Mounting: Semi-Recessed
 4. Material and Finish: Stainless Steel
 5. Capacity: 12 Gallon
 6. Provide at each Family, Men, and Women Lavatory. See Architectural Drawings for Location. Meet TAS Requirements.

L. Baby Changing Station
 1. Basis-of-Design Product: Koala Bear KB110-SSRE
2. Description: Horizontal Baby Changing Station
3. Mounting: Recessed
4. Material and Finish: – Stainless Steel
5. Size: 37”W x 23”H
6. Provide at each Family, Men, and Women Lavatory. See Architectural Drawings for Location. Meet TAS Requirements.

M. Folding Accessible Shower Seat
1. Basis-of-Design Product: Bobrick B-5193
2. Mounting: Surface mounted
4. Size: 25.5” L
5. Provide at each accessible shower compartment. Meet TAS Requirements.

2.3 FABRICATION

A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.

B. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F 446.

C. Contractor shall include blocking whether shown or not on the drawings for adequate backup and attachment as substrate, if current substrate is not present and/or detailed for adequate subcontractor Work. Current detailing of drawings does not show means and methods for subcontractor’s attachment of Work.

D. Contractor to provide continuous sealant, whether shown or not on the drawings, for adequate seal at metal edge of mirror unit and wall.
3.2 ADJUSTING AND CLEANING

A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.

B. Remove temporary labels and protective coatings.

C. Clean and polish exposed surfaces according to manufacturer's written recommendations.

END OF SECTION 102800
SECTION 104413 - FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fire-protection cabinets for the following:
 a. Portable fire extinguishers.
 B. Related Requirements:
 1. Section 104416 "Fire Extinguishers."

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Show door hardware, cabinet type, trim style, and panel style. Include roughing-in dimensions and details showing recessed-, semirecessed-, or surface-mounting method and relationships of box and trim to surrounding construction.
B. Shop Drawings: For fire-protection cabinets. Include plans, elevations, sections, details, and attachments to other work.
C. Samples: For each type of exposed finish required.
D. Product Schedule: For fire-protection cabinets. Indicate whether recessed, semirecessed, or surface mounted. Coordinate final fire-protection cabinet schedule with fire-extinguisher schedule to ensure proper fit and function. Use same designations indicated on Drawings.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For fire-protection cabinets to include in maintenance manuals.

1.5 COORDINATION
A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers fire hoses, hose valves, and hose racks indicated are accommodated.
B. Coordinate sizes and locations of fire-protection cabinets with wall depths.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Fire-Protection Cabinets: Listed and labeled to comply with requirements in ASTM E 814 for fire-resistance rating of walls where they are installed.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 FIRE-PROTECTION CABINET

A. Cabinet Type: Suitable for fire extinguisher.

1. Basis-of-Design Product: Subject to compliance with requirements, provide comparable product to:

 a. Larsens Manufacturing Company, #4 Stainless Steel, Vertical Duo Clear Door with Larsen-Loc. SS2409-R4, Semi-Rec. 3.5” projection, 24x9.5x6. (FS when mounted in rated wall.) Provide recessed handle when total projection from wall surface exceeds 4”.

B. Cabinet Trim Material: Cold-rolled steel with a standard finish of white baked acrylic enamel.

C. Door Material: Stainless Steel.

D. Door Style: Vertical duo panel with frame.

E. Door Glazing: Acrylic sheet.

 1. Acrylic Sheet Color: Clear transparent acrylic sheet.

F. Accessories:

 1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire-protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.
 2. Lettered Door Handle: One-piece, cast-iron door handle with the word "FIRE" embossed into face.
 3. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location.

 a. Identify fire extinguisher in fire-protection cabinet with the words "FIRE EXTINGUISHER."

 1) Location: Applied to cabinet door.
 2) Application Process: Pressure-sensitive vinyl letters.
 3) Lettering Color: Red.
 4) Orientation: Vertical.
G. Materials:

1. Stainless Steel: ASTM A 666, Type 304.
 a. Finish: No. 4 directional satin finish.

2.3 FABRICATION

A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.

 1. Weld joints and grind smooth.
 2. Provide factory-drilled mounting holes.
 3. Prepare doors and frames to receive locks.
 4. Install door locks at factory.

B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.

C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.4 GENERAL FINISH REQUIREMENTS

B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.

C. Finish fire-protection cabinets after assembly.

D. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for hose valves and cabinets to verify actual locations of piping connections before cabinet installation.

B. Examine walls and partitions for suitable framing depth and blocking where semirecessed cabinets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION
 A. Prepare recesses for semirecessed fire-protection cabinets as required by type and size of
cabinet and trim style.

3.3 INSTALLATION
 A. General: Install fire-protection cabinets in locations and at mounting heights indicated or, if not
 indicated, at heights indicated below:
 1. Fire-Protection Cabinets: 48 inches above finished floor to top of cabinet.
 B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.
 1. Unless otherwise indicated, provide recessed fire-protection cabinets. If wall thickness is
 inadequate for recessed cabinets, provide semirecessed fire-protection cabinets.
 2. Fasten mounting brackets to inside surface of fire-protection cabinets, square and plumb.
 C. Identification: Apply vinyl lettering.

3.4 ADJUSTING AND CLEANING
 A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets
 are installed unless otherwise indicated in manufacturer's written installation instructions.
 B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral
 locking devices operate properly.
 C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as
 recommended by manufacturer.
 D. Touch up marred finishes, or replace fire-protection cabinets that cannot be restored to factory-
 finished appearance. Use only materials and procedures recommended or furnished by fire-
 protection cabinet and mounting bracket manufacturers.
 E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful
 repair by finish touchup or similar minor repair procedures.

END OF SECTION 104413
SECTION 104416 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.

B. Related Requirements:

1. Section 104413 "Fire Protection Cabinets."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher and mounting brackets.

B. Product Schedule: For fire extinguishers. Coordinate final fire-extinguisher schedule with fire-protection cabinet schedule to ensure proper fit and function. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire extinguishers to include in maintenance manuals.

1.6 COORDINATION

A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure proper fit and function.
1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Failure of hydrostatic test according to NFPA 10.
 b. Faulty operation of valves or release levers.

2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."

B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

A. Fire Extinguishers: Type, size, and capacity for each fire-protection cabinet and mounting bracket indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amerex Corporation.
 b. Ansul Incorporated.
 c. Badger Fire Protection.
 d. Guardian Fire Equipment, Inc.
 e. JL Industries, Inc.; a division of the Activar Construction Products Group.
 f. Kidde Residential and Commercial Division; Subsidiary of Kidde plc.
 g. Larsens Manufacturing Company.
 h. Nystrom Building Products.
 i. Pyro-Chem; Tyco Safety Products.

2. Valves: Manufacturer's standard.
3. Handles and Levers: Manufacturer's standard.
4. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B, and bar coding for documenting fire-extinguisher location, inspections, maintenance, and recharging.

B. Multipurpose Dry-Chemical Type in Steel Container: UL-rated 4-A:60-B:C, 10-lb nominal capacity, with monoammonium phosphate-based dry chemical in enameled-steel container.
2.3 MOUNTING BRACKETS

A. Mounting Brackets: Manufacturer's standard galvanized steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or red baked-enamel finish.

B. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated by Architect.

1. Identify bracket-mounted fire extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to mounting surface.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fire extinguishers for proper charging and tagging.

 1. Remove and replace damaged, defective, or undercharged fire extinguishers.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.

 1. Mounting Brackets: 48 inches above finished floor to top of fire extinguisher.

B. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION 104416
SECTION 123661.19 - QUARTZ AGGLOMERATE COUNTERTOPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Quartz agglomerate countertops.
2. Quartz agglomerate backsplashes.
3. Quartz agglomerate end splashes.
4. Quartz agglomerate benches

1.3 ACTION SUBMITTALS

A. Product Data: For countertop materials.

B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.

1. Show locations and details of joints.
2. Show direction of directional pattern, if any.

C. Samples for Verification: For the following products:

1. Countertop material, 6 inches square.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For quartz agglomerate countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.
1.6 QUALITY ASSURANCE
 A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful in-service performance.
 B. Installer Qualifications: Fabricator of countertops.

1.7 FIELD CONDITIONS
 A. Field Measurements: Verify dimensions of countertops by field measurements after base cabinets are installed but before countertop fabrication is complete.

1.8 COORDINATION
 A. Coordinate locations of utilities that will penetrate countertops or backsplashes.

PART 2 - PRODUCTS

2.1 QUARTZ AGGLOMERATE COUNTERTOP MATERIALS
 A. Quartz Agglomerate: Solid sheets consisting of quartz aggregates bound together with a matrix of filled plastic resin and complying with ICPA SS-1, except for composition.
 1. Colors and Patterns: As scheduled on Drawings.
 B. Particleboard: ANSI A208.1, Grade M-2.
 C. Plywood: Exterior softwood plywood complying with DOC PS 1, Grade C-C Plugged, touch sanded.

2.2 COUNTERTOP FABRICATION
 A. Fabricate countertops according to quartz agglomerate manufacturer's written instructions and the AWI/AWMAC/WI's "Architectural Woodwork Standards."
 1. Grade: Custom.
 B. Configuration:
 1. Front: Straight, slightly eased at top with separate apron, refer to drawings.
 2. Backsplash: Straight, slightly eased at corner.
 C. Countertops: 3/4-inch-thick, quartz agglomerate with front edge built up with same material.
 D. Backsplashes: 3/4-inch-thick, quartz agglomerate.
E. Benches: 3/4-inch-thick, quartz agglomerate with front edge built up with same material.

F. Fabricate tops with shop-applied edges and backsplashes unless otherwise indicated. Comply with quartz agglomerate manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.

1. Fabricate with loose backsplashes for field assembly.

G. Joints: Fabricate countertops in sections for joining in field.

1. Joint Locations: Not within 18 inches of a sink or cooktop and not where a countertop section less than 36 inches long would result, unless unavoidable.
2. Joint Type: Bonded, 1/32 inch or less in width.

H. Cutouts and Holes:

1. Undercounter Plumbing Fixtures: Make cutouts for fixtures using template or pattern furnished by fixture manufacturer. Form cutouts to smooth, even curves.

2.3 INSTALLATION MATERIALS

A. Adhesive: Product recommended by quartz agglomerate manufacturer.

B. Sealant for Countertops: Comply with applicable requirements in Section 079200 "Joint Sealants."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates to receive quartz agglomerate countertops and conditions under which countertops will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of countertops.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install countertops level to a tolerance of 1/8 inch in 8 feet, 1/4 inch maximum. Do not exceed 1/64-inch difference between planes of adjacent units.

B. Secure countertops to subtops with adhesive according to quartz agglomerate manufacturer's written instructions. Align adjacent surfaces and, using adhesive in color to match countertop,
form seams to comply with quartz agglomerate manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

C. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.
 1. Clamp units to temporary bracing, supports, or each other to ensure that countertops are properly aligned and joints are of specified width.

D. Install backsplashes and end splashes by adhering to wall and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears. **Provide joint thicknesses between pieces to accept appropriate thickness of jointing for proper seal. Do not provide sealant spanning direct piece-to-piece connection.**

E. Install aprons to backing and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears. Fasten by screwing through backing. Predrill holes for screws as recommended by manufacturer.

F. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.

 1. Seal edges of cutouts in particleboard subtops by saturating with varnish.

G. Apply sealant to gaps at walls and all dissimilar materials; comply with Section 079200 "Joint Sealants."

END OF SECTION 123661.19
SECTION 220500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SECTION REQUIREMENTS

A. Submittals: Product Data.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Mechanical Sleeve Seals: Modular rubber sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

B. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

2.2 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2.3 MOTORS

A. Motor Characteristics:

1. Not used.
3. Frequency Rating: 60 Hz.
4. Voltage Rating: NEMA standard voltage for circuit voltage to which motor is connected.
5. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
6. Duty: Continuous duty at ambient temperature of 105 deg F and at altitude of 3300 feet above sea level.
7. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
8. Enclosure: Unless otherwise indicated, open dripproof.
9. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
2.4 HANGERS AND SUPPORTS

A. Hanger and Pipe Attachments: Factory fabricated with galvanized coatings; nonmetallic coated for hangers in direct contact with copper tubing.

B. Powder-Actuated Fasteners: Threaded-steel stud, with pull-out and shear capacities appropriate for supported loads and building materials where used.

C. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, with pull-out and shear capacities appropriate for supported loads and building materials where used.

2.5 VIBRATION ISOLATION DEVICES

A. Vibration Supports:
 1. Pads: Arranged in single or multiple layers of oil- and water-resistant neoprene of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates and factory cut to sizes that match supported equipment.
 2. Restrained Mounts: Double-deflection type, with molded, oil-resistant fiberglass, rubber, or neoprene isolator elements with factory-drilled, encapsulated top plate and baseplate. Provide isolator with minimum 0.5-inch static deflection.

B. Vibration Hangers:
 1. Elastomeric Hangers: Double-deflection type, with molded, oil-resistant rubber or neoprene isolator elements bonded to steel housings with threaded connections for hanger rods. Provide isolator with minimum 0.5-inch static deflection.
 2. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression. Provide isolator with minimum 1-inch static deflection.

2.6 PRESSURE GAGES AND TEST PLUGS

A. Pressure Gages: Direct-mounting, indicating-dial type complying with ASME B40.100. Dry metal case, minimum 2-1/2-inch diameter with red pointer on white face, and plastic window. Minimum accuracy 3 percent of middle half of range. Range two times operating pressure.

B. Test Plug: Corrosion-resistant brass or stainless-steel body with two self-sealing rubber core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping. Minimum pressure and temperature rating 500 psig at 200 deg F.

PART 3 - EXECUTION

3.1 MOTOR INSTALLATION

A. Anchor motor assembly to base, adjustable rails, or other support, arranged and sized according to manufacturer’s written instructions.
3.2 GENERAL PIPING INSTALLATIONS

A. Install piping free of sags and bends.

B. Install fittings for changes in direction and branch connections.

C. Install sleeves for pipes passing through concrete and masonry walls, gypsum board partitions, and concrete floor and roof slabs.

D. Exterior Wall, Pipe Penetrations: Mechanical sleeve seals installed in steel or cast-iron pipes for wall sleeves.

E. Comply with requirements in Division 07 Section "Penetration Firestopping" for sealing pipe penetrations in fire-rated construction.

F. Install unions at final connection to each piece of equipment.

G. Install dielectric unions and flanges to connect piping materials of dissimilar metals in gas piping.

H. Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals in water piping.

3.3 GENERAL EQUIPMENT INSTALLATIONS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components, unless otherwise indicated.

C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.4 BASES, SUPPORTS, AND ANCHORAGES

A. Anchor equipment to concrete base according to equipment manufacturer's written instructions.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.

2. Install dowel rods on 18-inch centers around the full perimeter of the base to connect concrete base to concrete floor.

3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete"

B. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors. Place grout, completely filling equipment bases.

3.5 HANGERS AND SUPPORTS

A. Comply with MSS SP-69 and MSS SP-89. Install building attachments within concrete or to structural steel.

B. Install hangers and supports to allow controlled thermal movement of piping systems.

C. Install powder-actuated fasteners and mechanical-expansion anchors in concrete after concrete is cured. Do not use in lightweight concrete or in slabs less than 4 inches thick.

D. Load Distribution: Install hangers and supports so piping live and dead loading and stresses from movement will not be transmitted to connected equipment.

E. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. **Adjustable Steel Clevis Hangers (MSS Type 1):** For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.

2. **Pipe Hangers (MSS Type 5):** For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.

3. **Adjustable Steel Band Hangers (MSS Type 7):** For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.

4. **Adjustable Band Hangers (MSS Type 9):** For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.

5. **Adjustable Swivel-Ring Band Hangers (MSS Type 10):** For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.

F. **Vertical-Piping Clamps:** Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. **Extension Pipe or Riser Clamps (MSS Type 8):** For support of pipe risers, NPS 3/4 to NPS 20.

2. **Carbon- or Alloy-Steel Riser Clamps (MSS Type 42):** For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

3.6 VIBRATION ISOLATION DEVICE INSTALLATION

A. Adjust vibration isolators to allow free movement of equipment limited by restraints.

END OF SECTION 220500
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.

C. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.

C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Presealed Systems.

C. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.
2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."
3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves.
2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves

5. Interior Partitions:

END OF SECTION 220517
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.

1.2 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.
B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Product certificates.
C. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 GENERAL

A. All piping, fittings, fixtures, or materials that contact potable water shall be lead-free.

2.2 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

A. Manufacturers:
 1. Trerice
 2. Weiss
 3. Weksler Instruments

B. Case: Die-cast aluminum or brass, 7 inches long.

C. Tube: Red or blue reading, mercury or organic-liquid filled, with magnifying lens.
D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

E. Window: Glass or plastic.

F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.

H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale Division to maximum of 1.5 percent of range.

2.3 THERMOWELLS

A. Manufacturers: Same as manufacturer of thermometer being used.

B. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.4 PRESSURE GAGES

A. Manufacturers:

1. Trerice
2. Weiss
3. Weksler Instruments

B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.

1. Case: Liquid-filled type, drawn steel or cast aluminum, 4-1/2-inch diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer.
6. Pointer: Red or other dark-color metal.
7. Window: Glass or plastic.
8. Ring: Metal.
9. Accuracy: Grade B, plus or minus 2 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:

1. Valves: NPS 1/4 brass or stainless-steel needle type.
2. Syphons: NPS 1/4 coil of brass tubing with threaded ends.
3. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal
2.5 TEST PLUGS

A. Manufacturers:
 1. Trerice
 2. Weiss
 3. Weksler Instruments

B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.

C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

D. Core Inserts: One or two self-sealing rubber valves.
 1. Insert material for air, water, oil, or gas service at 20 to 200 deg F shall be CR.
 2. Insert material for air or water service at minus 30 to plus 275 deg F shall be EPDM.

2.6 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.

J. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
 2. Inlets and outlets of each domestic water heat exchanger.
 3. Inlet and outlet of each domestic hot-water storage tank.
 4. Inlet and outlet of each remote domestic water chiller.

K. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Inlet and outlet of each pressure-reducing valve.
 3. Suction and discharge of each domestic water pump.

L. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

M. Adjust faces of meters and gages to proper angle for best visibility.

3.2 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F and minus 20 to plus 50 deg C.

B. Scale Range for Domestic Hot-Water Piping: 20 to 240 deg F and 0 to 150 deg C.

3.3 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 100 psi and 0 to 600 kPa.

B. Scale Range for Domestic Water Piping: 0 to 100 psi and 0 to 600 kPa.

END OF SECTION 220519
SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following general-duty valves:

1. Copper-alloy ball valves.
2. Ferrous-alloy butterfly valves.
5. Ferrous-alloy wafer check valves.
7. Chainwheel actuators.

B. Related Sections include the following:

1. Division 22 piping Sections for specialty valves applicable to those Sections only.

1.2 DEFINITIONS

A. The following are standard abbreviations for valves:

1. CWP: Cold working pressure.
2. EPDM: Ethylene-propylene-diene terpolymer rubber.
3. NBR: Acrylonitrile-butadiene rubber.
4. PTFE: Polytetrafluoroethylene plastic.
5. SWP: Steam working pressure.
6. TFE: Tetrafluoroethylene plastic.

1.3 SUBMITTALS

A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.

1.4 QUALITY ASSURANCE

A. ASME Compliance: ASME B31.9 for building services piping valves.

1. Exceptions: Domestic hot- and cold-water piping valves unless referenced.

B. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and design criteria.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.
1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

A. All piping, fittings, fixtures, or materials that contact potable water shall be lead-free.

B. Refer to Part 3 "Valve Applications" Article for applications of valves.

C. Bronze Valves: NPS 2 and smaller with threaded ends, unless otherwise indicated.

D. Ferrous Valves: NPS 2-1/2 and larger with flanged ends, unless otherwise indicated.

E. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream pipe, unless otherwise indicated.

G. Valve Actuators:
 1. Chainwheel: For attachment to valves, of size and mounting height, as indicated in the "Valve Installation" Article in Part 3.
 2. Gear Drive: For quarter-turn valves NPS 8 and larger.
 3. Handwheel: For valves other than quarter-turn types.
 4. Lever Handle: For quarter-turn valves NPS 6 and smaller.

H. Extended Valve Stems: On insulated valves.

J. Threaded: With threads according to ASME B1.20.1.
K. Valve Bypass and Drain Connections: MSS SP-45.

2.2 COPPER-ALLOY BALL VALVES

A. Manufacturers:

1. Two-Piece and Three Piece, Copper-Alloy Ball Valves:
 a. Apollo Valve.
 b. Crane Co.
 c. Hammond Valve.
 d. Jamesbury, Inc.
 e. Watts Industries, Inc.; Water Products Div.
 f. Nibco

B. Copper-Alloy Ball Valves, General: MSS SP-110.

C. Two-Piece, Copper-Alloy Ball Valves: Brass or bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig minimum CWP rating and blowout-proof stem.

D. Three-Piece, Copper-Alloy Ball Valves: Brass or bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig minimum CWP rating and blowout-proof stem.

2.3 FERROUS-ALLOY BUTTERFLY VALVES

A. Manufacturers:

1. Single-Flange, Ferrous-Alloy Butterfly Valves:
 a. Apollo Valve
 b. Bray International, Inc.
 c. Crane Co.
 d. Kitz Corporation of America.
 e. Milwaukee Valve Company.

2. Flanged, Ferrous-Alloy Butterfly Valves:
 a. Apollo Valve
 b. Bray International, Inc.
 c. Mueller Steam Specialty.

3. Grooved-End, Ductile-Iron Butterfly Valves:
 a. Apollo Valve
 b. Grinnell Corporation.
 c. Milwaukee Valve Company.
 d. Mueller Steam Specialty.
 e. Victaulic Co. of America.

B. Ferrous-Alloy Butterfly Valves, General: MSS SP-67, Type I, for tight shutoff, with disc and
lining suitable for potable water, unless otherwise indicated.

D. Flanged, 150-psig CWP Rating, Ferrous-Alloy Butterfly Valves: Flanged-end type with one- or two-piece stem.

2.4 BRONZE CHECK VALVES

A. Manufacturers:

1. Horizontal Lift Check Valves with Metal Disc:
 a. Apollo Valve
 b. Crane Co.
 c. Red-White Valve Corp.
 d. Walworth Co.

2. Vertical Lift Check Valves with Metal Disc:
 a. Apollo Valve
 b. Cincinnati Valve Co.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Red-White Valve Corp.

3. Swing Check Valves with Metal Disc:
 a. Apollo Valve
 b. Crane Co.
 c. Hammond Valve.
 d. Kitz Corporation of America.
 e. Watts Industries, Inc.; Water Products Div.

B. Bronze Check Valves, General: MSS SP-80.

C. Class 125, Bronze, Horizontal Lift Check Valves: Bronze body with bronze disc and seat.

D. Class 125, Bronze, Vertical Lift Check Valves: Bronze body with bronze disc and seat.

E. Class 125, Bronze, Swing Check Valves: Bronze body with bronze disc and seat.

2.5 GRAY-IRON SWING CHECK VALVES

A. Manufacturers:

1. Type I, Gray-Iron Swing Check Valves with Metal Seats:
 a. Apollo Valve.
 b. Crane Co.
 c. Milwaukee Valve Company.
2.5 GENERAL DUTY VALVES FOR PLUMBING

d. Mueller Co.
e. Watts Industries, Inc.; Water Products Div.

C. Class 125, gray-iron, swing check valves with metal seats.

D. 175-psig CWP Rating, Swing Check Valves: Ductile-iron body with shouldered ends.

2.6 FERROUS-ALLOY WAFER CHECK VALVES

A. Manufacturers:

1. Dual-Plate, Ferrous-Alloy, Wafer-Lug Check Valves:

a. Apollo Valve.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Gulf Valve Co.
 d. Valve and Primer Corp.

2. Dual-Plate, Ferrous-Alloy, Double-Flanged-Type Check Valves:

a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Gulf Valve Co.
 c. Techno Corp.

B. Ferrous-Alloy Wafer Check Valves, General: API 594, spring loaded.

C. Dual-Plate, Class 125 or 150, Ferrous-Alloy, Wafer-Lug Check Valves: Single-flange body.

D. Dual-Plate, Class 125 or 150, Ferrous-Alloy, Double-Flanged Check Valves: Flanged-end body.

2.7 CHAINWHEEL ACTUATORS

1. Not used.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance.

 1. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

C. Operate valves in positions from fully open to fully closed. Examine guides and seats made
accessible by such operations.

D. Examine threads on valve and mating pipe for form and cleanliness.

E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

F. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE APPLICATIONS

A. Refer to piping Sections for specific valve applications. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball, butterfly, or gate valves.
2. Throttling Service: Ball or butterfly valves.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.

C. Domestic Water Piping: Use the following types of valves:

1. Ball Valves, NPS 2 and Smaller: Two or Three-piece, 600-psig CWP rating, copper alloy.
2. Ball Valves, NPS 2-1/2 and Larger: Class 150 ferrous alloy.
4. Swing Check Valves, NPS 2 and Smaller: Class 125, bronze.
5. Swing Check Valves, NPS 2-1/2 and Larger: Class 125, gray iron.
6. Wafer Check Valves, NPS 2-1/2 and Larger: Dual-plate, wafer-lug or double-flanged, Class 125 or 150, ferrous alloy.

D. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded ends.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 and larger: Flanged, or threaded ends.

3.3 VALVE INSTALLATION

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

C. Locate valves for easy access and provide separate support where necessary.
D. Install valves in horizontal piping with stem at or above center of pipe.

E. Install valves in position to allow full stem movement.

F. Install chainwheel operators on valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor elevation.

G. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Dual-Plate Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.

3.4 JOINT CONSTRUCTION

A. Refer to Division 23 Section "Common Work Results for HVAC" for basic piping joint construction.

3.5 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION 220523
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes hangers and supports for plumbing system piping and equipment.

1.2 DEFINITIONS
A. MSS: Manufacturers Standardization Society for the Valve and Fittings Industry.
B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 SUBMITTALS
A. Product Data: For each Type of pipe hanger, channel support system component, and thermal-hanger shield insert indicated.
B. Shop Drawings: Provide shop drawings for each location required for multiple piping supports and trapeze hangers. Provide manufacturer's catalog data including load capacity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products from one of the following manufacturers:

1. Pipe Hangers:
 a. AAA Technology and Specialties Co., Inc.
 b. B-Line Systems, Inc.
 c. Grinnell Corp.
 d. National Pipe Hanger Corp.
 e. PHD Manufacturing, Inc.

2. Channel Support Systems:
 a. B-Line Systems, Inc.
 b. Grinnell Corp.; Power-Strut Unit.
 c. National Pipe Hanger Corp.
 d. Unistrut Corp.
3. Thermal-Hanger Shield Inserts:
 a. Carpenter & Patterson, Inc.
 b. Michigan Hanger Co., Inc.
 c. PHS Industries, Inc.
 d. Pipe Shields, Inc.

2.2 MANUFACTURED UNITS

A. Pipe Hangers, Supports, and Components: MSS SP-58, factory-fabricated components. Refer to "Hanger and Support Applications" Article in Part 3 for where to use specific hanger and support types.
 1. Galvanized, Metallic Coatings: For piping and equipment that will not have field-applied finish.
 2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.

B. Channel Support Systems: MFMA-2, factory-fabricated components for field assembly.
 1. Coatings: Manufacturer's standard painted or galvanized finish.
 2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.

C. Thermal-Hanger Shield Inserts: 100-psi minimum compressive-strength insulation, encased in sheet metal shield.
 1. Material for Cold Piping: ASTM C 552, Type I cellular glass or water-repellent-treated, ASTM C 533, Type I calcium silicate with vapor barrier.
 2. Material for Hot Piping: ASTM C 552, Type I cellular glass or water-repellent-treated, ASTM C 533, Type I calcium silicate.
 3. For Trapeze or Clamped System: Insert and shield cover entire circumference of pipe.
 4. For Clevis or Band Hanger: Insert and shield cover lower 180 degrees of pipe.
 5. Insert Length: Extend 2 inches beyond sheet metal shield.

2.3 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars, black and galvanized.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger requirements are specified in Sections specifying equipment and systems.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Specification Sections.
C. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Adjustable Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Adjustable Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
5. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
6. U-Bolts (MSS Type 24): For support of heavy pipe, NPS 1/2 to NPS 30.
7. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-Type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
10. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
11. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
12. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
13. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
14. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

D. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

E. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.

5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

F. Building Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.

3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.

4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.

6. C-Clamps (MSS Type 23): For structural shapes.

7. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.

8. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.

9. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.

10. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

G. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.

2. Protection Shields (MSS Type 40): Of length recommended by manufacturer to prevent crushing insulation.

3. Thermal-Hanger Shield Inserts: For supporting insulated pipe, 360-degree insert of high-density, 100-psi minimum compressive-strength, water-repellent-treated calcium silicate or cellular-glass pipe insulation, same thickness as adjoining insulation with vapor barrier and encased in 360-degree sheet metal shield.

H. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.

2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
3.2 HANGER AND SUPPORT INSTALLATION

A. Pipe Hanger and Support Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Channel Support System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled channel systems.
 1. Field assemble and install according to manufacturer's written instructions.

C. Heavy-Duty Steel Trapeze Installation: Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated, heavy-duty trapezes.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M, steel shapes selected for loads being supported. Weld steel according to AWS D-1.1.

D. Install building attachments within concrete slabs or attach to structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, and expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

E. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

F. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses will not be transmitted to connected equipment.

G. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9, "Building Services Piping," is not exceeded.

H. Insulated Piping: Comply with the following:
 1. Install MSS SP-58, Type 39 protection saddles. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 2. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
4. Insert Material: Length at least as long as protective shield.
5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure above or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

3.4 METAL FABRICATION

A. Cut, drill, and fit miscellaneous metal fabrications for heavy-duty steel trapezes and equipment supports.

B. Fit exposed connections together to form hairline joints. Field-weld connections that cannot be shop-welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.6 PAINTING

A. Touching Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.

1.2 SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's unique equipment number.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Black.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inches high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09.
B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:
 1. Domestic Water Piping:
 a. Background Color: Blue.
 2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Red.
END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.
4. Sanitary waste piping exposed to freezing conditions.
5. Storm-water piping exposed to freezing conditions.
6. Roof drains and rainwater leaders.
7. Supplies and drains for handicap-accessible lavatories and sinks.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Qualification Data: For qualified Installer.

C. Field quality-control reports.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.4 DELIVERY, STORAGE, AND HANDLING
 A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION
 A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
 C. Coordinate installation and testing of heat tracing.

1.6 SCHEDULING
 A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
 B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
 B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
 C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
 D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
 E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
 F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Pittsburgh Corning Corporation; Foamglass.

2. Block Insulation: ASTM C 552, Type I.
3. Special-Shaped Insulation: ASTM C 552, Type III.
4. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
5. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
6. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.

I. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

J. Phenolic:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Kingspan Tarec Industrial Insulation NV; Koolphen K.
b. Resolco International BV; Insul-phen.

2. Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1.
3. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

K. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials.

 1. Products: Subject to compliance with requirements, provide one of the following:

 a. Armacell LLC; Tubolit.
 b. Nomaco Insulation; IMCOLOCK and NOMALOCK.

2.2 INSULATING CEMENTS

 1. Products: Subject to compliance with requirements, provide one of the following:

 a. Ramco Insulation, Inc.; Super-Stik.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

 1. Products: Subject to compliance with requirements, provide one of the following:

 a. Ramco Insulation, Inc.; Thermokote V.

 1. Products: Subject to compliance with requirements, provide one of the following:

 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.

 1. Products: Subject to compliance with requirements, provide one of the following:

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

E. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.

1. Products: Subject to compliance with requirements, provide one of the following:
2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

G. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polyco VP Adhesive.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
3. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 570.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
3. Service Temperature Range: Minus 50 to plus 220 deg F.
4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, provide one of the following:
 c. Vimasco Corporation; 713 and 714.
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Cellular-Glass and Phenolic Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F.
5. Color: White or gray.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.

B. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.
2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.

1. Products: Subject to compliance with requirements, provide one of the following:

B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; Elastafab 894.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

1. Products: Subject to compliance with requirements, provide one of the following:

2.10 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide one of the following:
a. Johns Manville; Zeston.
c. Proto Corporation; LoSmoke.
d. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

3. Color: Color-code jackets based on system.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

1. Products: Subject to compliance with requirements, provide one of the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Prefomed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

3. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Prefomed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Pittsburgh Corning Corporation; Pittwrap.
 b. Polyguard Products, Inc.; Insulrap No Torch 125.

2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
c. Compac Corporation; 110 and 111.
d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lb/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lb/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lb/inch in width.

2.12 SECUREMENTS

A. Bands:

1. Products: Subject to compliance with requirements provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.
3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

C. Wire: 0.080-inch nickel-copper alloy 0.062-inch soft-annealed, stainless steel 0.062-inch soft-annealed, galvanized steel.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2.13 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Engineered Brass Company.
 b. McGuire Manufacturing.
 c. Plumberex.
 d. Truebro; a brand of IPS Corporation.
 e. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Truebro; a brand of IPS Corporation.
 b. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from the same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of the same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of the same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of the same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of the same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

 1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.9 INSTALLATION OF PHENOLIC INSULATION

A. General Installation Requirements:

1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with 0.062-inch wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals.

B. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets with vapor retarders on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

C. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

D. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.

E. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.

3.10 INSTALLATION OF POLYOLEFIN INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of polyolefin pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.11 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.12 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.13 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation.Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.14 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.15 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

 1. NPS 1 and Smaller: Insulation shall be one of the following:
b. Flexible Elastomeric: 3/4 inch thick.
c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
d. Phenolic: 1 inch thick.
e. Polyolefin: 1 inch thick.

2. NPS 1-1/4 and Larger: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 b. Flexible Elastomeric: 3/4 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.

 2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.

C. Domestic Chilled Water (Potable):
 1. All Pipe Sizes: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.

D. Stormwater and Overflow:
 1. All Pipe Sizes: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.
E. Roof Drain and Overflow Drain Bodies:

1. All Pipe Sizes: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.

F. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.

G. Sanitary Waste Piping Where Heat Tracing Is Installed:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Cellular Glass: 2 inches thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
 c. Phenolic: 1-1/2 inches thick.

H. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:

1. All Pipe Sizes: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.

I. Hot Service Drains:

1. All Pipe Sizes: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

J. Hot Service Vents:

1. All Pipe Sizes: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.
3.16 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:

1. All Pipe Sizes: Insulation shall be one of the following:

 a. Cellular Glass: 2 inches thick.
 b. Flexible Elastomeric: 2 inches thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
 d. Phenolic: 2 inches thick.
 e. Polyolefin: 2 inches thick.

B. Domestic Hot and Recirculated Hot Water:

1. All Pipe Sizes: Insulation shall be one of the following:

 a. Cellular Glass: 2 inches thick.
 b. Flexible Elastomeric: 2 inches thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
 d. Phenolic: 2 inches thick.
 e. Polyolefin: 2 inches thick.

C. Sanitary Waste Piping Where Heat Tracing Is Installed:

1. All Pipe Sizes: Insulation shall be one of the following:

 a. Cellular Glass: 2 inches thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
 c. Phenolic: 2 inches thick.

D. Hot Service Drains:

1. All Pipe Sizes: Insulation shall be one of the following:

 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

E. Hot Service Vents:

1. All Pipe Sizes: Insulation shall be one of the following:

 b. Mineral-Fiber, Preformed Pipe Insulation, Type II: 1 inch thick.

3.17 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

A. Loose-fill insulation, for belowground piping, is specified in Division 33 piping distribution Sections.

C. Chilled Water, All Sizes: Cellular glass, 2 inches thick.

3.18 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:

1. None.
2. PVC, Color-Coded by System: 20 mils thick.
3. Aluminum, Smooth: 0.020 inch thick.
4. Painted Aluminum, Smooth: 0.020 inch thick.
5. Stainless Steel, Type 304 or Type 316: 0.024 inch thick.

D. Piping, Exposed:

1. None.
2. PVC, Color-Coded by System: 20 mils thick.
3. Aluminum, Smooth: 0.032 inch thick.
4. Painted Aluminum, Smooth: 0.032 inch thick.
5. Stainless Steel, Type 304 or Type 316: 0.024 inch thick.

3.19 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:

1. PVC, Color-Coded by System: 30 mils thick.
2. Aluminum, Smooth: 0.032 inch thick.
3. Painted Aluminum, Smooth 0.032 inch thick.
4. Stainless Steel, Type 304 or Type 316: 0.024 inch thick.

D. Piping, Exposed:

1. PVC: 30 mils thick.
2. Aluminum, Smooth with Z-Shaped Locking Seam 0.032 inch thick.
3. Stainless Steel, Type 304 or Type 316 with Z-Shaped Locking Seam: 0.024 inch thick.

3.20 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.
END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes domestic water piping from 5 feet outside of building to fixtures and equipment inside the building.

B. Section Includes:

1. Copper tube and fittings.
2. PEX tube and fittings.
3. Piping joining materials.

C. Related Sections include the following:

1. Division 22 Section "Meters and Gages" for thermometers, pressure gages, and fittings.
2. Division 22 Section "Plumbing Specialties" for water distribution piping specialties.

1.2 PERFORMANCE REQUIREMENTS

A. Provide components and installation capable of producing domestic water piping systems with the following minimum working-pressure ratings, unless otherwise indicated:

1.3 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.

C. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 61, "Drinking Water System Components-Health Effects; Sections 1 through 9," for potable domestic water piping and components.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

B. Transition Couplings for Aboveground Pressure Piping: Coupling or other manufactured fitting the same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

C. Transition Couplings for Underground Pressure Piping: AWWA C219, metal, sleeve-Type coupling or other manufactured fitting the same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.2 COPPER TUBING

A. Soft Copper Tube: ASTM B 88, Type K, water tube, annealed temper.

2. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.
3. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

B. Hard Copper Tube: ASTM B 88, Type L, water tube, drawn temper.

2. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.
3. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

2.3 PEX TUBE AND FITTINGS

A. Tube Material: PEX plastic according to ASTM F876 and ASTM F877.

B. Fittings: ASTM F1807, metal insert and copper crimp rings.

C. Push-Fit Fittings: ASSE 1061, push-fit fittings.

D. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F876; with plastic or corrosion-resistant-metal valve for each outlet.
2.4 PE ENCASEMENT
 A. PE Encasement for Underground Metal Piping: ASTM A 674 or AWWA C105 PE film, 0.008-inch (0.20-mm) minimum thickness, tube or sheet.

2.5 VALVES
 A. Refer to Division 23 Section "Valves" for bronze and cast-iron, general-duty valves.
 B. Refer to Division 22 Section "Plumbing Specialties" for balancing and drain valves.

PART 3 - EXECUTION

3.1 EXCAVATION
 A. Refer to Division 2 Section "Earthwork" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS
 A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below, unless otherwise indicated.
 B. Flanges may be used on aboveground piping, unless otherwise indicated.
 C. Fitting Option: Mechanically formed tee-branch outlets and brazed joints may be used on aboveground copper tubing.
 D. Underground Domestic Water Piping: Use any of the following piping materials for each size range:
 1. NPS 2 and Smaller: Soft copper tube, Type L; copper pressure fittings; and brazed joints.
 2. NPS 2-1/2 to NPS 3-1/2: PVC, Schedule 40 pipe; PVC, Schedule 40 socket fittings; and solvent-cemented joints.
 3. NPS 4 to NPS 8: PVC, Schedule 40 pipe; PVC, Schedule 40 socket fittings; and solvent-cemented joints.
 4. NPS 4 to NPS 8: PVC AWWA Class 150 pipe; PVC fabricated Class 150 or molded Class 150 fittings; and restrained, gasketed joints.
 E. Aboveground Domestic Water Piping: Use any of the following piping materials for each size range:
 1. PEX tube, NPS 1 and smaller.
 a. Fittings for PEX tube:
 1) ASTM F1807, metal insert and copper crimp rings.
 2) ASTM F1960, cold expansion fittings and reinforcing rings.
 3) ASSE 1061, push-fit fittings.
2. NPS 1-1/2 and Smaller: Hard copper tube, Type L; copper pressure fittings; and soldered joints.
3. NPS 2: Hard copper tube, Type L; copper pressure fittings; and soldered joints.
4. NPS 2-1/2 to NPS 6: Hard copper tube, Type L; copper pressure fittings; and soldered joints.
5. NPS 8: Hard copper tube, Type L; copper pressure fittings; and soldered joints.

3.3 VALVE APPLICATIONS

A. Drawings indicate valve Types to be used. Where specific valve Types are not indicated, the following requirements apply:

1. Shutoff Duty: Use bronze ball or gate valves for piping NPS 2 and smaller. Use cast-iron butterfly or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use bronze ball valves for piping NPS 2 and smaller. Use cast-iron butterfly valves with flanged ends for piping NPS 2-1/2 and larger.

3.4 PIPING INSTALLATION

A. Refer to Division 23 Section "Water Distribution" for site water distribution and service piping.
B. Refer to Division 23 Section "Basic Mechanical Requirements" for basic piping installation.
C. Extend domestic water service piping to exterior water distribution piping in sizes and locations indicated.
D. Install underground copper tubing according to CDA's "Copper Tube Handbook."
E. Install underground PE piping according to ASTM D 2774 and ASTM F 645.
F. Install underground PVC piping according to ASTM D 2774 and ASTM F 645.
G. Install sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Refer to Division 23 Section "Basic Mechanical Materials and Methods" for sleeves and mechanical sleeve seals.
H. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside building at each domestic water service. Refer to Division 23 Section "Meters and Gages" for pressure gages, and to Division 23 Section "Plumbing Specialties" for drain valves and strainers.
I. Install aboveground domestic water piping level and plumb.
J. Fill water piping. Check components to determine that they are not air bound and that piping is full of water.
K. Perform the following steps before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Remove plugs used during testing of piping and plugs used for temporary sealing of piping during installation.
5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
6. Remove filter cartridges from housings, and verify that cartridges are as specified for application where used and that cartridges are clean and ready for use.

L. Check plumbing equipment and verify proper settings, adjustments, and operation. Do not operate water heaters before filling with water.

M. Check plumbing specialties and verify proper settings, adjustments, and operation.

1. Water-Pressure Regulators: Set outlet pressure at 80 psig maximum, unless otherwise indicated.

N. Energize pumps and verify proper operation.

3.5 JOINT CONSTRUCTION

A. Refer to Division 23 Section "Basic Mechanical Requirements" for basic piping joint construction.

B. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

C. Mechanically Formed Outlets: Form tee in copper tube according to equipment manufacturer's written instructions. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

3.6 VALVE INSTALLATION

A. Install sectional valve close to water main on each branch and riser serving plumbing fixtures or equipment. Use ball or gate valves for piping NPS 3 and smaller.

B. Install shutoff valve on each water supply to equipment and on each water supply to plumbing fixtures without supply stops. Use ball valves for piping NPS 3 and smaller. Use butterfly or gate valves for piping NPS 4 and larger.

C. Install drain valves for equipment, at base of each water riser, at low points in horizontal piping, and where required to drain water piping.

1. Install hose-end drain valves at low points in water mains, risers, and branches.
2. Install stop-and-waste drain valves where indicated.

D. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow.
3.7 HANGER AND SUPPORT INSTALLATION

A. Refer to Division 23 Section "Hangers and Supports" for pipe hanger and support devices. Install the following:

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Individual, Straight, Horizontal Piping Runs: According to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 a. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 23 Section "Hangers and Supports."

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
2. NPS 1-1/2: 108 inches with 3/8-inch rod.
3. NPS 2: 10 feet with 3/8-inch rod.
4. NPS 2-1/2: 11 feet with 1/2-inch rod.
5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
7. NPS 6: 12 feet with 3/4-inch rod.
8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.

F. Install supports for vertical steel piping every 15 feet.

G. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.
7. NPS 8: 10 feet with 3/4-inch rod.

H. Install supports for vertical copper tubing every 10 feet.
I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.8 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to service piping with shutoff valve, and extend and connect to the following:

1. Booster Systems: Cold-water suction and discharge piping.
2. Water Heaters: Cold-water supply and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Refer to Division 22 Section "Plumbing Fixtures."
4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.9 FIELD QUALITY CONTROL

A. Inspect domestic water piping as follows:

1. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
2. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.

 b. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

3. Re-inspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for re-inspection.
4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

B. Test domestic water piping as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced domestic water piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
4. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
5. Prepare reports for tests and required corrective action.

3.10 ADJUSTING

A. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 1. Manually adjust ball-Type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 2. Adjust calibrated balancing valves to flows indicated.

3.11 CLEANING

A. Clean and disinfect potable and nonpotable domestic water piping as follows:
 1. Purge new piping and parts of existing domestic water piping that have been altered, extended, or repaired before using.
 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction or, if methods are not prescribed, procedures described in either AWWA C651 or AWWA C652 or as described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or Part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or Part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.
SECTION 221314 - STORM DRAINAGE, SANITARY WASTE, AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following for soil, waste, and vent piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.
 3. Encasement for underground metal piping.

1.2 DEFINITIONS

B. EPDM: Ethylene-propylene-dieneterpolymer rubber.
C. LLDPE: Linear, low-density polyethylene plastic.
D. NBR: Acrylonitrile-butadiene rubber.
E. PE: Polyethylene plastic.
F. PVC: Polyvinyl chloride plastic.
G. PVDF: Polyvinylidene Fluoride.
H. TPE: Thermoplastic elastomer.
I. HDPE: High Density Polyethylene.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

1.4 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.
B. Field quality-control inspection and test reports.
C. Submit manufacturer’s technical product data and installation instructions for all piping material and products.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

C. Commissioning of a system or systems specified in this section is part of the construction process. Documentation and testing of these systems, as well as training of the Owner’s operation and maintenance personnel, is required in cooperation with the Owner’s Representative and the Commissioning Agent. Project Closeout is dependent on successful completion of all commissioning procedures, documentation, and issue closure.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade A or B, Standard Weight or Schedule 40, galvanized. Include ends matching joining method.

B. Drainage Fittings: ASME B16.12, galvanized, threaded, cast-iron drainage pattern.

C. Pressure Fittings:

2.3 COPPER TUBE AND FITTINGS

A. Acceptable Manufacturers:
 1. Mueller

 1. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought
copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Types L and M, water tube, drawn temper.

 1. Copper Pressure Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-
copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 2. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 3. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket,
metal-to-metal seating surfaces, and solder-joint or threaded ends.

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

 1. Copper Pressure Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-
copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.

2.4 SPECIAL PIPE FITTINGS

A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type,
reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and
corrosion-resistant-metal tension band and tightening mechanism on each end.

 1. Available Manufacturers:
 a. Fernco, Inc.
 b. Logan Clay Products Company (The).
 c. Mission Rubber Co.
 d. NDS, Inc.
 e. Plastic Oddities, Inc.

 2. Sleeve Materials:
 b. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe
materials being joined.

B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-
length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and
tightening mechanism on each end.

 1. Available Manufacturers:
 b. Mission Rubber Co.
C. Rigid, Unshielded, Nonpressure Pipe Couplings: ASTM C 1461, sleeve-type reducing- or transition-type mechanical coupling molded from ASTM C 1440, TPE material with corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Available Manufacturers:
 a. ANACO.

D. Pressure Pipe Couplings: AWWA C219 metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.

1. Available Manufacturers:
 b. EBAA Iron Sales, Inc.
 c. Romac Industries, Inc.
 d. Viking Johnson.

2. Center-Sleeve Material: Manufacturer's standard.
3. Gasket Material: Natural or synthetic rubber.
4. Metal Component Finish: Corrosion-resistant coating or material.

E. Wall-Penetration Fittings: Compound, ductile-iron coupling fitting with sleeve and flexing sections for up to 20-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

1. Available Manufacturers:
 a. SIGMA Corp.

2.5 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Description: ASTM A 674 or AWWA C105, high-density, crosslaminated PE film of 0.004-inch or LLDPE film of 0.008-inch minimum thickness.

B. Form: tube.

C. Color: Black or natural.

2.6 SCHEDULE 40 SOLID WALL PVC PIPE AND DWV FITTINGS

A. Acceptable Manufacturers:

1. Charlotte Pipe.
2. Spears Manufacturing.

B. Pipe and fittings shall be manufactured from PVC compound with a cell class of 12454 per ASTM D 1784 and conform with National Sanitation Foundation (NSF) standard 14. Pipe shall
be iron pipe size (IPS) conforming to ASTM D 1785 and ASTM D 2665. Fittings shall conform to ASTM D 2665.

C. All pipe and fittings to be produced by a single manufacturer and to be installed in accordance with manufacturer’s recommendations and local code requirements. Solvent cements shall conform to ASTM D 2564, primer shall conform to ASTM F 656. The system to be manufactured by Charlotte Pipe and Foundry Company and is intended for non-pressure drainage applications where the temperature will not exceed 140°F.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to other Specification Sections "Earthwork" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and compression joints.
2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints.
3. Steel pipe, drainage fittings, and threaded joints.
4. Copper DWV tube, copper drainage fittings, and soldered joints.

C. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and compression joints.
2. Hubless cast-iron soil pipe and fittings; standard, and heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
3. Steel pipe, drainage fittings, and threaded joints.

D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and compression joints.
2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel and rigid, unshielded couplings; and hubless-coupling joints.
3. Steel pipe, drainage fittings, and threaded joints.
4. Copper DWV tube, copper drainage fittings, and soldered joints.
 a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.

E. Aboveground, vent piping NPS 5 and larger shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and compression joints.
2. Hubless cast-iron soil pipe and fittings; standard, and heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
3. Steel pipe, drainage fittings, and threaded joints.

F. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

G. Underground, soil and waste piping NPS 5 and larger shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and compression joints.

H. Aboveground storm drainage piping NPS 6 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; standard, and heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

I. Aboveground, storm drainage piping NPS 8 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; standard, and heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

J. Underground storm drainage piping NPS 6 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

K. Underground, storm drainage piping NPS 8 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, cast-iron couplings; and coupled joints.
 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

L. Aboveground storm drainage force mains NPS 1-1/2 and NPS 2 shall be any of the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.
M. Aboveground storm drainage force mains NPS 2-1/2 and NPS 6 shall be any of the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.
 3. Grooved-end steel pipe, grooved-joint system fittings and couplings, and grooved joints.

N. Underground storm drainage force mains NPS 4 (DN 100) and smaller shall be any of the following:
 1. Hard copper tube, Type L; wrought-copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.
 a. Include grooved-joint system fittings and couplings and grooved joints where indicated.
 3. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile-iron fittings; glands, gaskets, and bolts; and mechanical joints.
 a. Include grooved-joint system fittings and couplings and grooved joints where indicated.
 4. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron fittings; gaskets; and gasketed joints.
 a. Include grooved-joint system fittings and couplings and grooved joints where indicated.
 5. Pressure pipe couplings if dissimilar pipe materials or piping with small difference in OD must be joined.

O. Underground storm drainage force mains NPS 5 and larger shall be any of] the following:
 1. Steel pipe, pressure fittings, and threaded joints.
 2. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile-iron fittings; glands, gaskets, and bolts; and mechanical-joint joints.
 3. Pressure pipe couplings if dissimilar pipe materials or piping with small difference in OD must be joined.

P. Chemical Waste Drainage Pipe and Fittings: All Piping, interior and exterior shall be plenum-rated High Density Polyethylene (HDPE)

3.3 PIPING INSTALLATION
 A. Basic piping installation requirements are specified in Division 23 Section "Basic Mechanical Materials and Methods."
 B. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.
 C. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.
D. Install underground, ductile-iron, special pipe fittings according to AWWA C600.

1. Install encasement on piping according to ASTM A 674 or AWWA C105.

E. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 23 Section "Basic Mechanical Materials and Methods."

F. Install wall-penetration fitting at each service pipe penetration through foundation wall. Make installation watertight.

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

H. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

I. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

J. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:

1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

K. Install engineered soil and waste drainage and vent piping systems as follows:

2. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

L. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 23 Section "Common Work Results for HVAC."

C. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.

D. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.

E. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 23 Section "Valves."

B. Shutoff Valves: Install shutoff valve on each sewage pump discharge.
 1. Install gate or full-port ball valve for piping NPS 2 (DN 50) and smaller.
 2. Install gate valve for piping NPS 2-1/2 (DN 65) and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

D. Backwater Valves: Install backwater valves in piping subject to sewage backflow.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type, unless otherwise indicated.
 2. Floor Drains: Drain outlet backwater valves, unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Backwater valve are specified in Division 22 Section "Plumbing Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Division 15 Section "Hangers and Supports." Install the following:
 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 2. Install individual, straight, horizontal piping runs according to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 15 Section "Hangers and Supports."

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6: 60 inches with 3/4-inch rod.
 5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 7. NPS 6: 12 feet with 3/4-inch rod.
 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.

I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 4. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 5. NPS 6: 10 feet with 5/8-inch rod.
 6. NPS 8: 10 feet with 3/4-inch rod.

J. Install supports for vertical copper tubing every 10 feet.

K. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.
3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:

1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 (DN 65) and larger.

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. System verification testing is part of the Commissioning Process. Verification testing shall be performed by the contractor and witnessed and documented by the Commissioning Agent.

E. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in piping. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.9 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221314
SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:

1.2 ACTION SUBMITTALS
 A. Product Data: For each type and size of domestic-water heater indicated.

1.3 INFORMATIONAL SUBMITTALS
 A. Product certificates.
 B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
 C. Source quality-control reports.
 D. Field quality-control reports.
 E. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
 C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Warranty Periods: From date of Substantial Completion.

a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:

 1) Storage Tank: Five years.
 2) Controls and Other Components: Two year(s).

PART 2 - PRODUCTS

2.1 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS

A. Commercial, Gas-Fired, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Lochinvar, LLC.
 b. PVI Industries, LLC.
 c. Smith, A. O. Corporation.
 d. State Industries.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. AMTROL, Inc.
c. State Industries.

2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

4. Capacity and Characteristics:

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

D. Heat-Trap Fittings: ASHRAE 90.2.

F. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include pressure rating as required to match gas supply.

H. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
 2. Oil-Fired, Domestic-Water Heaters: ASME rated and stamped.

I. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.
 2. Oil-Fired, Domestic-Water Heaters: ASME rated and stamped.

J. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.
K. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

L. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.

C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Section 03 30 00 "Cast-in-Place Concrete."

1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.13 "Butterfly Valves for Plumbing Piping," and Section 22 05 23.15 "Gate Valves for Plumbing Piping."

C. Install gas-fired, domestic-water heaters according to NFPA 54.

 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
 4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 23 11 23 "Facility Natural-Gas Piping."

D. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

E. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

F. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 22 11 19 "Domestic Water Piping Specialties."

G. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

H. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

I. Fill domestic-water heaters with water.

J. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 22 11 16 "Domestic Water Piping."

B. Comply with requirements for gas piping specified in Section 23 11 23 "Facility Natural-Gas Piping."
C. Drawings indicate general arrangement of piping, fittings, and specialties.

D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters.

END OF SECTION 223400
SECTION 224000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes plumbing fixtures and related components.

B. Related Sections include the following:

 1. Division 22 Section "Plumbing Specialties" for backflow preventers and specialty fixtures not in this Section.

1.2 DEFINITIONS

A. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

B. Fitting: Device that controls flow of water into or out of plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

1.3 SUBMITTALS

A. Product Data: Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports and indicate materials and finishes, dimensions, construction details, and flow-control rates for each type of fixture indicated.

B. Shop Drawings: Diagram power, signal, and control wiring and differentiate between manufacturer-installed and field-installed wiring.

C. Maintenance Data: For plumbing fixtures to include in operation maintenance manuals.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.

 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

F. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

G. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

H. Comply with the following applicable standards and other requirements specified for plumbing fixtures:

1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
3. Stainless-Steel Fixtures Other Than Service Sinks: ASME A112.19.3M.
4. Vitreous-China Fixtures: ASME A112.19.2M.

I. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:

1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
5. Faucets: ASME A112.18.1M.

11. Supply and Drain Fittings: ASME A112.18.1M.

J. Comply with the following applicable standards and other requirements specified for shower faucets:

1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.
3. Faucets: ASME A112.18.1M.

K. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:

2. Brass and Copper Supplies: ASME A112.18.1M.
4. Tubular Brass Drainage Fittings and Piping: ASME A112.18.1M.

L. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1. Floor Drains: ASME A112.21.1M.

1.5 COORDINATION

A. Coordinate roughing-in and final plumbing fixture locations, and verify that fixtures can be installed to comply with original design and referenced standards.
PART 2 - PRODUCTS

2.1 FAUCETS
A. Refer to Plumbing Drawings for Plumbing Fixture Schedules.
B. Manufacturers: Subject to compliance with requirements, provide plumbing fixtures by one of the following (Vitreous China):
 2. Kohler.
 3. Zurn.
 4. Chicago.

2.2 FLUSHOMETERS
A. Flushingomter: Water Closet: Refer to Plumbing Drawings for Plumbing Fixture Schedules.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sloan; Royal
 b. Zurn Aquaflush
B. Flushingomter, Urinal: Refer to Plumbing Drawings for Plumbing Fixture Schedules.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sloan Royal
 b. Zurn Aquaflush

2.3 TOILET SEATS
A. Toilet Seats: Solid plastic.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bemis.
 b. Church.
 2. Configuration: Open front without cover.
3. **Size**: Elongated.

4. **Class**: Standard commercial.

5. **Hinge Type**: SC, self-sustaining, check.

6. **Color**: White.

2.4 FIXTURE SUPPORTS

A. Water-Closet Support:
Heavy-duty water-closet combination carrier designed for accessible and standard mounting height. Include single or double, vertical or horizontal, hub-and-spigot or hubless waste fitting as required for piping arrangement; faceplates; couplings with gaskets; feet; and fixture bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space.

1. **Manufacturers**: Subject to compliance with requirements, provide products by one of the following:
 - a. Wade.
 - b. Zurn.
 - c. J.R. Smith.
 - d. Josam.
 - e. Watts.

B. Urinal Support:
Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture. Include steel uprights with feet.

1. **Manufacturers**: Subject to compliance with requirements, provide products by one of the following:
 - a. Wade.
 - b. Zurn.
 - c. J.R. Smith.
 - d. Josam.
 - e. Watts.

2. **Accessible Fixture Support**: Include rectangular steel uprights.

C. Lavatory Support:
Type II, lavatory carrier with concealed arms and tie rod. Include steel uprights with feet.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Wade.

b. Zurn.

c. J.R. Smith.

d. Josam.

e. Watts.

2.5 WATER CLOSETS

A. Refer to Plumbing Drawings for Plumbing Fixture Schedules.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 2. Kohler.

 3. Zurn.

2.6 URINALS

A. Refer to Plumbing Drawings for Plumbing Fixture Schedules.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Kohler Co. with beehive strainer.

2.7 LAVATORIES

A. Refer to Plumbing Drawings for Plumbing Fixture Schedules.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 2. Kohler.
3. Zurn.

2.8 STAINLESS STEEL SINKS

A. Refer to Plumbing Drawings for Plumbing Fixture Schedules.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Just.
3. Griffin.
5. Amtekco Industries.

2.9 MOP BASINS

A. Refer to Plumbing Drawings for Plumbing Fixture Schedules.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Plumbing/Fiat Products.
2. Stern Williams.
3. Acorn.
4. CECO.

2.10 SUPPLIES, STOPS AND CHROME PLATED TUBULAR BRASS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. McGuire.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water soil and for waste piping systems and supports to verify actual locations and sizes of piping connections and that locations and types of supports match those
indicated, before plumbing fixture installation. Use manufacturer's roughing-in data if roughing-in data are not indicated.

B. Examine walls, floors, and cabinets for suitable conditions where fixtures are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FIXTURE INSTALLATION

A. Assemble fixtures, trim, fittings, and other components according to manufacturers' written instructions.

B. For wall-hanging fixtures, install off-floor supports affixed to building substrate.
 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.

C. Install back-outlet, wall-hanging fixtures onto waste fitting seals and attach to supports.

D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.

E. Install wall-hanging fixtures with tubular waste piping attached to supports.

F. Install fixtures level and plumb according to manufacturers' written instructions and roughing-in drawings.

G. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 1. Exception: Use ball, gate, or globe valve if stops are not specified with fixture.
 2. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

H. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

I. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

J. Install toilet seats on water closets.

K. Install water-supply, flow-control fittings with specified flow rates in fixture supplies at stop valves.
L. Install faucet, flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

M. Install shower, flow-control fittings with specified maximum flow rates in shower arms.

N. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

O. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings.

P. Seal joints between fixtures and walls, floors, and counters using sanitary-type, one-part mildew-resistant, silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect water supplies from water distribution piping to fixtures.

C. Connect drain piping from fixtures to drainage piping.

D. Supply and Waste Connections to Plumbing Fixtures: Connect fixtures with water supplies, stops, risers, traps, and waste piping. Use size fittings required to match fixtures. Connect to plumbing piping.

E. Supply and Waste Connections to Fixtures and Equipment Specified in Other Sections: Connect fixtures and equipment with water supplies, stops, risers, traps, and waste piping specified. Use size fittings required to match fixtures and equipment. Connect to plumbing piping.

F. Ground equipment.
 1. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

A. Verify that installed fixtures are categories and types specified for locations where installed.

B. Check that fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed fixtures for damage. Replace damaged fixtures and components.
D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.5 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Operate and adjust controls. Replace damaged and malfunctioning units and controls.

C. Adjust water pressure at faucets, shower valves, and flushometer valves to produce proper flow and stream.

D. Replace washers and seals of leaking and dripping faucets and stops.

3.6 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:

1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.

2. Remove sediment and debris from drains.

3.7 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000
SECTION 224019 - PLUMBING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following plumbing specialties:

1. Backflow preventers.
2. Water regulators.
4. Thermostatic water mixing valves.
5. Water tempering valves.
8. Key-operation hydrants.
9. Wheel-handle wall hydrants.
10. Trap seal primer valves.
11. Drain valves.
14. Sleeve penetration systems.
15. Flashing materials.
17. Floor drains.

1.2 DEFINITIONS

A. The following are industry abbreviations for plastic piping materials:

2. PE: Polyethylene plastic.
3. PUR: Polyurethane plastic.
4. PVC: Polyvinyl chloride plastic.

1.3 PERFORMANCE REQUIREMENTS

A. Provide components and installation capable of producing piping systems with following minimum working-pressure ratings, unless otherwise indicated:

1. Domestic Water Piping: 125 psig.
3. Storm Drainage Piping: 10-foot head of water.
1.4 SUBMITTALS

A. Product Data: Include rated capacities and shipping, installed, and operating weights. Indicate materials, finishes, dimensions, required clearances, and methods of assembly of components; and piping and wiring connections for the following:

1. Backflow preventers and water regulators.
2. Balancing valves, water filters, and strainers.
3. Thermostatic water mixing valves and water tempering valves.
4. Water hammer arresters, air vents, and trap seal primer valves and systems.
5. Drain valves, hose bibbs, and hydrants.
6. Cleanouts, floor drains, open receptors, trench drains, and roof drains.
7. Vent caps, vent terminals, and roof flashing assemblies.
8. Sleeve penetration systems.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field test reports.

D. Maintenance Data: For plumbing specialties to include in maintenance manuals. Include the following:

1. Backflow preventers and water regulators.
2. Thermostatic water mixing valves and water tempering valves.
3. Hose hydrants.

1.5 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of plumbing specialties and are based on the specific system indicated.

B. Plumbing specialties shall bear label, stamp, or other markings of specified testing agency.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for piping materials and installation.

E. NSF Compliance:

1.6 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Operating Key Handles: Equal to 100 percent of amount installed for each key-operated hose bibb and hydrant installed.

PART 2 - PRODUCTS

2.1 BACKFLOW PREVENTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Pipe-Applied, Atmospheric-Type Vacuum Breakers: ASSE 1001, with floating disc and atmospheric vent.

C. Hose-Connection Vacuum Breakers: ASSE 1011, nickel plated, with nonremovable and manual drain features, and ASME B1.20.7, garden-hose threads on outlet. Units attached to rough-bronze-finish hose connections may be rough bronze.

D. Intermediate Atmospheric-Vent Backflow Preventers: ASSE 1012, suitable for continuous pressure application. Include inlet screen and two independent check valves with intermediate atmospheric vent.

E. Antisiphon-Pressure-Type Vacuum Breakers: ASSE 1020, suitable for continuous pressure application. Include shutoff valves, spring-loaded check valve, spring-loaded floating disc, test cocks, and atmospheric vent.

1. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.

F. Reduced-Pressure Detector Assembly Backflow Preventers: ASSE 1047, FM approved or UL listed, and suitable for continuous pressure application. Include outside screw and yoke gate valves on inlet and outlet, and strainer on inlet. Include test cocks; pressure-differential relief valve with ASME A112.1.2 air-gap fitting located between two positive-seating check valves; and bypass with displacement-type water meter, valves, and reduced-pressure backflow preventer.

1. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.

G. Hose-Connection Backflow Preventers: ASSE 1052, suitable for at least 3-gpm low and applications with up to 10-foot head of backwater pressure. Include two check valves; intermediate atmospheric vent; and nonremovable, ASME B1.20.7, garden-hose threads on outlet.

2.2 BALANCING VALVES

A. Calibrated Balancing Valves: Adjustable, with two readout ports and memory setting indicator. Include manufacturer's standard hoses, fittings, valves, differential pressure meter, and carrying case.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Amtrol, Inc.
 b. Taco, Inc.

2. NPS 2 and Smaller: Bronze body with brass ball, adjustment knob, calibrated nameplate, and threaded or solder-joint ends.
3. NPS 2-1/2 and Larger: Cast-iron, Y-pattern body with bronze disc and flanged ends.

2.3 THERMOSTATIC WATER MIXING VALVES

 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Symmons Industries, Inc.
 2. Powers.

 B. General: ASSE 1017, manually adjustable, thermostatic water mixing valve with bronze body. Include check stop and union on hot- and cold-water-supply inlets, adjustable temperature setting, and thermometer.

 1. Type: Bimetal thermostat, operation and pressure rating 125 psig minimum.

 C. Thermostatic Water Mixing Valves: Unit, with the following:

 1. Piping, valves, and unions.
 3. Cabinet: Recessed-mounting steel box with steel hinged door, white enameled finish, and thermometer in front.

 1. Arrangement: One large-flow, thermostatic water mixing valve with flow-control valve, pressure regulator, inlet and outlet pressure gages, and one small-flow, thermostatic water mixing valve with flow-control valve. Include outlet thermometer, factory- or field-installed inlet and outlet valves, and other indicated options.
 2. Include piping, valves, and unions.

2.4 WATER TEMPERING VALVES

 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Leonard Valve Company.
2. Armstrong Rada company

B. General: Manually adjustable, thermostatically controlled water tempering valve; bronze body; and adjustable temperature setting.

C. System Water Tempering Valves: Piston or discs controlling both hot- and cold-water flow, capable of limited antiscald protection. Include threaded inlets and outlet.
 1. Finish: Chrome plated.

2.5 STRAINERS

A. Strainers: Y-pattern, unless otherwise indicated, and full size of connecting piping. Include ASTM A 666, Type 304, stainless-steel screens with 3/64-inch round perforations, unless otherwise indicated.
 1. Pressure Rating: 125-psig minimum steam working pressure, unless otherwise indicated.
 2. NPS 2 and Smaller: Bronze body, with female threaded ends.
 3. NPS 2-1/2 and Larger: Cast-iron body, with interior AWWA C550 or FDA-approved, epoxy coating and flanged ends.

2.6 KEY-OPERATION HYDRANTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Wade.
 2. Josam Co.
 3. J.R. Smith.
 4. Woodford Manufacturing Co.

B. General: ASME A112.21.3M, key-operation hydrant with pressure rating of 125 psig.
 1. Inlet: NPS 3/4 or NPS 1 threaded or solder joint.
 3. Operating Keys: One with each key-operation hydrant.

C. Nonfreeze Exposed-Outlet Wall Hydrants: ASSE 1019, self-drainable with integral nonremovable hose-connection vacuum breaker, casing and operating rod to match wall thickness, projecting outlet, and wall clamp.
1. Classification: Type B, for automatic draining with hose removed or with hose attached and nozzle closed.

2.7 DRAIN VALVES

A. Hose-End Drain Valve: MSS SP-80, gate valve, Class 125, ASTM B 62 bronze body, with NPS 3/4 (DN 20) threaded or solder-joint inlet and ASME B1.20.7, garden-hose threads on outlet and cap. Hose bibbs are prohibited for this application.

2.8 MISCELLANEOUS PIPING SPECIALTIES

A. Water Hammer Arresters: ASSE 1010 or PDI-WH 201, metal-bellows type with pressurized metal cushioning chamber. Sizes indicated are based on ASSE 1010 or PDI-WH 201, Sizes A through F.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Wade.
 b. Zurn.

B. Hose Bibbs: Bronze body with replaceable seat disc complying with ASME A112.18.1M for compression-type faucets. Include NPS 1/2 or NPS 3/4 threaded or solder-joint inlet, of design suitable for pressure of at least 125 psig; integral nonremovable, drainable hose-connection vacuum breaker; and garden-hose threads complying with ASME B1.20.7 on outlet.

1. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
2. Finish for Service Areas: Rough bronze.
3. Finish for Finished Rooms: Chrome or nickel plated.
5. Operation for Service Areas: Wheel handle.
6. Operation for Finished Rooms: Operating key.
7. Include operating key with each operating-key hose bibb.
8. Include integral wall flange with each chrome- or nickel-plated hose bibb.
9. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Wade.
 b. Josam Co.
 c. J.R. Smith.
 d. Woodford Manufacturing Co.

C. Air Vents: Float type for automatic air venting.

1. Bolted Construction: Bronze body with replaceable, corrosion-resistant metal float and stainless-steel mechanism and seat; threaded NPS 1/2 minimum inlet; 125-psig minimum pressure rating at 140 deg F; and threaded vent outlet.
D. Roof Flashing Assemblies: Manufactured assembly made of 4-lb/sq. ft, 0.0625-inch-thick, lead flashing collar and skirt extending at least 6 inches from pipe with galvanized steel boot reinforcement, and counterflashing fitting.

1. Available Manufacturers:
 a. Acorn Engineering Company; Elmdor/Stoneman Div.

2. Open-Top Vent Cap: Without cap.

E. Open Drains: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting, joined with ASTM C 564, rubber gaskets.

F. Floor-Drain Inlet Fittings: Cast iron, with threaded inlet and threaded or spigot outlet, and trap seal primer valve connection.

G. Fixed Air-Gap Fittings: Manufactured cast-iron or bronze drainage fitting with semiopen top with threads or device to secure drainage inlet piping in top and bottom spigot or threaded outlet larger than top inlet. Include design complying with ASME A112.1.2 that will provide fixed air gap between installed inlet and outlet piping.

H. Stack Flashing Fittings: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.

I. Vent Terminals: Commercially manufactured, shop- or field-fabricated, frost-proof assembly constructed of galvanized steel, copper, or lead-coated copper. Size to provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

2.9 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:

1. General Use: 4-lb/sq. ft., 0.0625-inch thickness.
2. Vent Pipe Flashing: 3-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152, of the following minimum weights and thicknesses, unless otherwise indicated:

1. General Applications: 12 oz./sq. ft.
2. Vent Pipe Flashing: 8 oz./sq. ft.

C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

2.10 CLEANOUTS

A. Cleanouts, C.O.: Comply with ASME A112.3.1.

1. Application: Floor cleanout, wall cleanout, or exposed piping.

2. Acceptable Manufacturers:
 - Wade.
 - Smith, Jay R. Mfg. Co.
 - Josam.

3. Body or Ferrule Material: Cast iron.

5. Outlet Connection: Spigot.

6. Closure: Brass plug with straight threads and gasket.

7. Adjustable Housing Material: Cast iron with threads.

9. Frame and Cover Shape: Round except in tile floors where square tops shall be used.

2.11 FLOOR DRAINS

A. Floor Drains: Comply with ASME A112.3.1.

1. Application: Floor drain.

2. Acceptable Manufacturers:
 - Wade.
 - Smith, Jay R. Mfg. Co.
 - Josam.

4. Seepage Flange: Not required.

5. Clamping Device: Required.

6. Outlet: Bottom.

7. Exposed Surfaces and Interior Lining: Not required.

8. Sediment Bucket: Not required.
10. Top Shape: Round except in areas with tile flooring where tops shall be square.
11. Top Loading Classification: Medium Duty except in vehicle traffic areas where the top loading classifications shall be Heavy Duty.
12. Trap Material: Not required.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to "Basic Mechanical Materials and Methods" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
3. Do not install bypass piping around backflow preventers.

C. Install pressure regulators with inlet and outlet shutoff valves and balance valve bypass. Install pressure gages on inlet and outlet.

D. Install strainers on supply side of each control valve, pressure regulator, and solenoid valve.

E. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

F. Install cleanout deck plates with top flush with finished floor, for floor cleanouts for piping below floors.

G. Install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall, for cleanouts located in concealed piping.

H. Install vent flashing sleeves on stacks passing through roof. Secure over stack flashing according to manufacturer's written instructions.
I. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

J. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

K. Fasten wall-hanging plumbing specialties securely to supports attached to building substrate if supports are specified and to building wall construction if no support is indicated.

L. Fasten recessed-type plumbing specialties to reinforcement built into walls.

M. Install wood-blocking reinforcement for wall-mounting and recessed-type plumbing specialties.

N. Install individual shutoff valve in each water supply to plumbing specialties. Use ball, gate, or globe valve if specific valve is not indicated. Install shutoff valves in accessible locations. Refer to Division 15 Section "Valves" for general-duty ball, butterfly, check, gate, and globe valves.

O. Install air vents at piping high points. Include ball, gate, or globe valve in.

P. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

Q. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other specification Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Connect plumbing specialties to piping specified in other Division 23 Sections.
D. Ground equipment.

E. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

F. Connect plumbing specialties and devices that require power according to Division 16 Sections.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. Lead Sheets: Burn joints of lead sheets 6-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4-lb/sq. ft., 0.0625-inch thickness or thicker.
2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors

1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches round specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings.

F. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each backflow preventer, thermostatic water mixing valve, and water tempering valve.

1. Text: Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 224019
SECTION 224223 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Shower faucets.
 2. Grout.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets Non-ADA SH-1:

 1. Manufacturer: Acorn Shower-Ware 500 Series, Chicago Faucet, or Symmons.
 2. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; and shower head.
 3. Faucet:
 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 c. Finish: Polished stainless steel.
 d. Showerhead: Acorn Logan Wizard 1.6 gpm
 e. EPA WaterSense: Required.
 f. Mounting: Concealed
 g. Operation: Single-handle, twist or rotate control.
 h. Antiscald Device: Integral with mixing valve.
 i. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.
4. Supply Connections: NPS 3/4

5. Shower Head:
 b. Type: Integral with mounting flange
 c. Shower Head Material: Metallic with chrome-plated finish.
 e. Integral Volume Control: Required.

C. Shower Faucets ADA SH-2:

1. Manufacturer: Acorn Penal-Ware
2. Description: Single-handle, thermostatic mixing valve with hot- and cold-water indicators; check stops; and shower head.
3. Faucet:
 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 c. Finish: Satin finish.
 d. Showerhead: 1.6 gpm.
 e. EPA WaterSense: Required.
 g. Operation: Single-handle, twist or rotate control.
 h. Antiscald Device: Integral with mixing valve.
 i. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.

5. Shower Head:
 b. Type: Integral with mounting flange
 c. Shower Head Material: Metallic with satin finish.
 d. Spray Pattern: Adjustable.
 e. Integral Volume Control: Required.

2.2 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Assemble shower components according to manufacturers' written instructions.

B. Install showers level and plumb according to roughing-in drawings.

C. Install water-supply piping with stop on each supply to each shower faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 220523 "General-Duty Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.

D. Install shower flow-control fittings with specified maximum flow rates in shower arms.

E. Set shower receptors in leveling bed of cement grout.

F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings.

G. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.2 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with traps and soil and waste piping requirements specified in Section 221314 "Storm Drainage, Sanitary Waste and Vent Piping."

3.3 ADJUSTING

A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.4 CLEANING AND PROTECTION

A. After completing installation of showers, inspect and repair damaged finishes.
B. Clean showers, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

END OF SECTION 224223
SECTION 230510 - BASIC MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
7. Grout.
8. Mechanical demolition.
9. Equipment installation requirements common to equipment sections.
10. Painting and finishing.
11. Concrete bases.
12. Supports and anchorages.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.
1.3 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

1.4 QUALITY ASSURANCE

A. Electrical Characteristics for Mechanical Equipment: Equipment of differing electrical characteristics may be furnished provided such equipment is proposed on the “Alternate Manufacturer Evaluation Form”, subsequently approved, and connecting electrical services, circuit breakers, and conduit sizes appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

1.6 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for mechanical installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for mechanical items requiring access that are concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
B. **Pipe-Flange Gasket Materials:** Suitable for chemical and thermal conditions of piping system contents.

1. **ASME B16.21,** nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. **Full-Face Type:** For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. **Narrow-Face Type:** For raised-face, Class 250, cast-iron and steel flanges.

2. **AWWA C110,** rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. **Flange Bolts and Nuts:** ASME B18.2.1, carbon steel, unless otherwise indicated.

D. **Plastic, Pipe-Flange Gasket, Bolts, and Nuts:** Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. **Solder Filler Metals:** ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. **Brazing Filler Metals:** AWS A5.8, BcuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. **Welding Filler Metals:** Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.3 **TRANSITION FITTINGS**

A. **AWWA Transition Couplings:** Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.

1. **Manufacturers:**
 b. Dresser Industries, Inc.; DMD Div.
 c. Smith-Blair, Inc.
 d. Viking Johnson.

2. **Underground Piping NPS 1-1/2 and Smaller:** Manufactured fitting or coupling.

3. **Underground Piping NPS 2 and Larger:** AWWA C219, metal sleeve-type coupling.

4. **Aboveground Pressure Piping:** Pipe fitting.

B. **Flexible Transition Couplings for Underground Nonpressure Drainage Piping:** ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

1. **Manufacturers:**
 b. Fernco, Inc.
2.4 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 c. Zurn Industries, Inc.; Wilkins Div.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Epco Sales, Inc.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Central Plastics Company.
 c. Pipeline Seal and Insulator, Inc.
 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 1. Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
1. Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Victaulic Co. of America.

2.5 MECHANICAL SLEEVE SEALS
 A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Metraflex Co.
 c. Pipeline Seal and Insulator, Inc.
 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.6 SLEEVES
 A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
 B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
 C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
 D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.7 ESCUTCHEONS
 A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
 B. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.
C. Split-Plate, Stamped-Steel Type: With concealed or exposed-rivet hinge, set screw or spring clips, and chrome-plated finish.

D. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.8 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 MECHANICAL DEMOLITION

A. Refer to Division 1 Sections "Cutting and Patching" and "Selective Demolition" for general demolition requirements and procedures.

B. Disconnect, demolish, and remove mechanical systems, equipment, and components indicated to be removed.

1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for piping with fittings with penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
 1. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint.

N. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

O. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

P. Verify final equipment locations for roughing-in.

Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

A. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.

2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.

3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

5. Install anchor bolts to elevations required for proper attachment to supported equipment.

6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 3 Section "Cast-in-Place Concrete."

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 5 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.9 GROUTING

A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.
C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 230510
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes basic requirements for factory-installed motors.

B. Related Sections include the following:

 1. Division 23 Section "Vibration Controls for HVAC Piping and Equipment" for mounting motors and vibration isolation control devices.
 2. Division 23 Sections for application of motors and reference to specific motor requirements for motor-driven equipment.

1.2 DEFINITIONS

A. Factory-Installed Motor: A motor installed by motorized-equipment manufacturer as a component of equipment.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

1.4 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices. Provide motors that are:

 1. Compatible with the following:

 a. Magnetic controllers.
 b. Multispeed controllers.
 c. Reduced-voltage controllers.

 2. Designed and labeled for use with variable frequency controllers, and suitable for use throughout speed range without overheating.

 3. Matched to torque and horsepower requirements of the load.

 4. Matched to ratings and characteristics of supply circuit and required control sequence.
PART 2 - PRODUCTS

2.1 MOTOR REQUIREMENTS

A. Motor requirements apply to factory-installed motors except as follows:
 1. Different ratings, performance, or characteristics for a motor are specified in another Section.
 2. Manufacturer for a factory-installed motor requires ratings, performance, or characteristics, other than those specified in this Section, to meet performance specified.

2.2 MOTOR CHARACTERISTICS

A. Motors 3/4 HP and Larger: Three phase.
B. Motors Smaller Than 1/2 HP: Single phase.
C. Frequency Rating: 60 Hz.
D. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.
E. Duty: Continuous duty at ambient temperature of 105 deg F and at altitude of 3300 feet above sea level.
F. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
G. Enclosure: Open dripproof.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Premium efficiency according to NEMA MG 1-1998 Table 12-12.
C. Stator: Copper windings, unless otherwise indicated.
 1. Multispeed motors shall have separate winding for each speed.
D. Rotor: Squirrel cage, unless otherwise indicated.
E. Bearings: Double-shielded, pretubricated ball bearings suitable for radial and thrust loading.
F. Temperature Rise: Match insulation rating, unless otherwise indicated.
G. Insulation: Class F, unless otherwise indicated.
H. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

I. Enclosure: Cast iron for motors 7.5hp and larger; rolled steel for motors smaller than 7.5 hp.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Inrush Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Designed with critical vibration frequencies outside operating range of controller output.
 3. Temperature Rise: Matched to rating for Class B insulation.
 4. Insulation: Class H.

C. Source Quality Control: Perform the following tests on each motor according to NEMA MG 1:
 1. Measure winding resistance.
 2. Read no-load current and speed at rated voltage and frequency.
 3. Measure locked rotor current at rated frequency.
 4. Perform high-potential test.

2.5 SINGLE-PHASE MOTORS

A. Type: One of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split-phase start, capacitor run.
 3. Capacitor start, capacitor run.

B. Shaded-Pole Motors: For motors 1/20 hp and smaller only.

C. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

D. Bearings: Ball type for belt-connected motors and other motors with high radial forces on
motor shaft; sealed, prelubricated-sleeve type for other single-phase motors.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:

1. Run each motor with its controller. Demonstrate correct rotation, alignment, and speed at motor design load.
2. Test interlocks and control features for proper operation.
3. Verify that current in each phase is within nameplate rating.

3.2 ADJUSTING

A. Align motors, bases, shafts, pulleys and belts. Tension belts according to manufacturer's written instructions.

3.3 CLEANING

A. After completing equipment installation, inspect unit components. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

END OF SECTION 230513
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes hangers and supports for mechanical system piping and equipment.
B. Related Sections include the following:
 1. Division 23 Section "Vibration Controls for HVAC Piping and Equipment" for vibration isolation restraint devices.

1.2 DEFINITIONS

A. MSS: Manufacturers Standardization Society for the Valve and Fittings Industry.
B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 SUBMITTALS

A. Product Data: For each Type of pipe hanger, channel support system component, and thermal-hanger shield insert indicated.
B. Shop Drawings: Provide shop drawings for each location required for multiple piping supports and trapeze hangers. Provide manufacturer’s catalog data including load capacity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products from one of the following manufacturers:
 1. Pipe Hangers:
 a. AAA Technology and Specialties Co., Inc.
 b. B-Line Systems, Inc.
 c. Grinnell Corp.
 d. National Pipe Hanger Corp.
 e. PHD Manufacturing, Inc.

 2. Channel Support Systems:
a. B-Line Systems, Inc.
b. Grinnell Corp.; Power-Strut Unit.
c. National Pipe Hanger Corp.
d. Unistrut Corp.

3. Thermal-Hanger Shield Inserts:
 a. Carpenter & Patterson, Inc.
 b. Michigan Hanger Co., Inc.
 c. PHS Industries, Inc.
 d. Pipe Shields, Inc.

2.2 MANUFACTURED UNITS

A. Pipe Hangers, Supports, and Components: MSS SP-58, factory-fabricated components. Refer
 to "Hanger and Support Applications" Article in Part 3 for where to use specific hanger and
 support types.

 1. Galvanized, Metallic Coatings: For piping and equipment that will not have field-applied
 finish.
 2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are
 in direct contact with copper tubing.

B. Channel Support Systems: MFMA-2, factory-fabricated components for field assembly.

 1. Coatings: Manufacturer's standard painted or galvanized finish.
 2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are
 in direct contact with copper tubing.

C. Thermal-Hanger Shield Inserts: 100-psi minimum compressive-strength insulation, encased in
 sheet metal shield.

 1. Material for Cold Piping: ASTM C 552, Type I cellular glass or water-repellent-treated,
 ASTM C 533, Type I calcium silicate with vapor barrier.
 2. Material for Hot Piping: ASTM C 552, Type I cellular glass or water-repellent-treated,
 ASTM C 533, Type I calcium silicate.
 3. For Trapeze or Clamped System: Insert and shield cover entire circumference of pipe.
 4. For Clevis or Band Hanger: Insert and shield cover lower 180 degrees of pipe.
 5. Insert Length: Extend 2 inches beyond sheet metal shield.

2.3 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars, black and galvanized.
3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger requirements are specified in Sections specifying equipment and systems.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Specification Sections.

C. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

 1. Adjustable Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 4. Adjustable Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 5. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
 6. U-Bolts (MSS Type 24): For support of heavy pipe, NPS 1/2 to NPS 30.
 7. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
 8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
 9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-Type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
 10. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 11. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
 12. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
 13. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
 14. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

D. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

E. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

F. Building Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joint construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
8. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
9. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
10. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

G. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe, 360-degree insert of high-density, 100-psi minimum compressive-strength, water-repellent-treated calcium silicate or cellular-glass pipe insulation, same thickness as adjoining insulation with vapor barrier and encased in 360-degree sheet metal shield.
H. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.

3.2 HANGER AND SUPPORT INSTALLATION

A. Pipe Hanger and Support Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Channel Support System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled channel systems.

1. Field assemble and install according to manufacturer's written instructions.

C. Heavy-Duty Steel Trapeze Installation: Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated, heavy-duty trapezes.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D-1.1.

D. Install building attachments within concrete slabs or attach to structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, and expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

E. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

F. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses will not be transmitted to connected equipment.

G. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9, "Building Services Piping," is not exceeded.

H. Insulated Piping: Comply with the following:

1. Install MSS SP-58, Type 39 protection saddles. Fill interior voids with insulation that matches adjoining insulation.

 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
2. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

4. Insert Material: Length at least as long as protective shield.
5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure above or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

3.4 METAL FABRICATION
 A. Cut, drill, and fit miscellaneous metal fabrications for heavy-duty steel trapezes and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field-weld connections that cannot be shop-welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING
 A. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.6 PAINTING
 A. Touching Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 230529
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes the following mechanical identification materials and their installation:
 1. Equipment nameplates.
 2. Equipment markers.
 3. Access panel and door markers.
 4. Pipe markers.
 5. Stencils.
 6. Valve tags.
 7. Valve schedules.
 8. Warning tags.

1.2 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in maintenance manuals.

1.3 QUALITY ASSURANCE

1.4 COORDINATION
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with location of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 EQUIPMENT IDENTIFICATION DEVICES

A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.
 1. Data:
 a. Manufacturer, product name, model number, and serial number.
 b. Capacity, operating and power characteristics, and essential data.
 2. Location: Accessible and visible.
 3. Fasteners: As required to mount on equipment.

B. Equipment Markers: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2. Fabricate in sizes required for message
 1. Terminology: Match schedules as closely as possible.
 2. Data:
 a. Name and plan number.
 b. Equipment service.
 c. Design capacity.
 d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
 3. Size: 2-1/2 by 4 inches for control devices, dampers, and valves; 4-1/2 by 6 inches for equipment.

C. Access Panel and Door Markers: 1/16-inch- thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch center hole for attachment.

2.2 PIPING IDENTIFICATION DEVICES

A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow.
 1. Colors: Comply with ASME A13.1, unless otherwise indicated.
 2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 3. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers extending 360 degrees around pipe at each location.
4. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label.

5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.

B. Pretensioned Pipe Markers: Precoiled semirigid plastic formed to cover full circumference of pipe and to attach to pipe without adhesive.

2.3 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door markers, equipment markers, equipment signs, and similar operational instructions.

1. Stencil Material: Metal or fiberboard.
2. Stencil Paint: Exterior, gloss, alkyd enamel or acrylic enamel, black, unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, alkyd enamel or acrylic enamel in colors according to ASME A13.1, unless otherwise indicated.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers, with numbering scheme approved by Architect or Engineer. Provide 5/32-inch hole for fastener.

1. Material: 0.032-inch-thick brass or aluminum.
2. Valve-Tag Fasteners: Brass wire-link or beaded chain; or S-hook.

2.5 VALVE SCHEDULES

A. Valve Schedules: For each piping system, on standard-size bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Include mounting screws.
2. Frame: Extruded aluminum.
3. Glazing: ASTM C 1036, Type I, Class 1, Glazing Quality B, 2.5-mm, single-thickness glass.
2.6 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags; of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.

2.7 TAG IDENTIFICATION SCHEME FOR LOCATING HIDDEN COMPONENTS

A. Tag system to allow easy identification of the location of components and equipment that are not visible from the finished space and are accessible from the ceiling grid. Provide laminated, printed tags with pin back to be fastened flush with acoustical ceiling. The pin fasteners shall be manually removable without the use of tools and shall not separate from the ceiling panels when the panels are dropped from ceiling height. Tag shall be white background with black letters 3/8” high, each tag bearing the equipment tag. Concealed equipment to be tagged shall include but not limited to the following:

1. Exhaust fans.
2. VAV terminal units.
3. Hot water isolation valves.
4. Ductless split-system air-handling units.
5. Heat pumps.

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Division 23 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer’s option.

3.2 EQUIPMENT IDENTIFICATION

A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:

1. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
2. Pumps, compressors, chillers, condensers, and similar motor-driven units.
3. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
4. Fans, blowers, primary balancing dampers, and mixing boxes.
5. Packaged HVAC central-station and zone-type units.

B. Install equipment markers with mechanical fasteners on or near each major item of mechanical equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.

1. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
2. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
3. Locate markers where accessible and visible. Include markers for the following general categories of equipment:
 a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 b. Fire department hose valves and hose stations.
 c. Meters, gages, thermometers, and similar units.
 d. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 e. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 f. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 g. Fans, blowers, primary balancing dampers, and mixing boxes.
 h. Packaged HVAC central-station and zone-type units.
 i. Tanks and pressure vessels.
 j. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.

C. Stenciled Equipment Marker Option: Stenciled markers may be provided instead of laminated-plastic equipment markers, at Installer's option, if lettering larger than 1 inch high is needed for proper identification because of distance from normal location of required identification.

D. Install access panel markers with screws on equipment access panels.

3.3 PIPING IDENTIFICATION

A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.

1. Pipes with OD, Including Insulation, Less Than 6 Inches: Pretensioned pipe markers. Use size to ensure a tight fit.
2. Pipes with OD, Including Insulation, 6 Inches and Larger: Shaped pipe markers. Use size to match pipe and secure with fasteners.
B. Stenciled Pipe Marker Option: Stenciled markers may be provided instead of manufactured pipe markers, at Installer's option. Install stenciled pipe markers with painted, color-coded bands or rectangles complying with ASME A13.1 on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following:

1. Valve-Tag Size, shape, and color:
 a. 1-1/2 inches, round, natural color.

3.5 VALVE-SCHEDULE INSTALLATION

A. Mount valve schedule on wall in accessible location in each major equipment room.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.
3.7 ADJUSTING
 A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

3.8 CLEANING
 A. Clean faces of mechanical identification devices and glass frames of valve schedules.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY
 A. The scope of work includes TAB for all HVAC systems, existing and new.
 B. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.

1.2 DEFINITIONS
 C. TAB: Testing, adjusting, and balancing.
 D. TABB: Testing, Adjusting, and Balancing Bureau.
 E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 SUBMITTALS
 B. Certified TAB reports.

1.4 QUALITY ASSURANCE
 A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or TABB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or TABB as a TAB technician.
 B. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.

H. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

I. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
J. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

K. Examine operating safety interlocks and controls on HVAC equipment.

L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:
 1. Permanent electrical-power wiring is complete.
 2. Hydronic systems are filled, clean, and free of air.
 3. Automatic temperature-control systems are operational.
 4. Equipment and duct access doors are securely closed.
 5. Balance, smoke, and fire dampers are open.
 6. Isolating and balancing valves are open and control valves are operational.
 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.
3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

F. Verify that motor starters are equipped with properly sized thermal protection.

G. Check dampers for proper position to achieve desired airflow path.

H. Check for airflow blockages.

I. Check condensate drains for proper connections and functioning.

J. Check for proper sealing of air-handling-unit components.

K. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.

2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.

1. Measure terminal outlets using a direct-reading hood or outlet manufacturer’s written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.

1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer’s name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.7 TOLERANCES
A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 2. Air Outlets and Inlets: Plus or minus 10 percent.

3.8 REPORTING
A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.9 FINAL REPORT
A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Fan curves.
 2. Manufacturers' test data.
 3. Field test reports prepared by system and equipment installers.
 4. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB contractor.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report.
 Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Fan drive settings including settings and percentage of maximum pitch diameter.
 e. Settings for supply-air, static-pressure controller.
 f. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.
3. Pipe and valve sizes and locations.
4. Terminal units.
5. Balancing stations.

3.10 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Single-wall rectangular ducts and fittings.
2. Single-wall round and flat-oval ducts and fittings.
4. Sealants and gaskets.

B. Related Sections:

1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

A. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.3 SUBMITTALS

A. Product Data: For each type of the following products:

1. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints (if required), and vibration isolation.

C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

D. Welding certificates.

E. Field quality-control reports.

1.4 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to the following:

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS
A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-
pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Sheet Metal Connectors, Inc.
 e. Spiral Manufacturing Co., Inc.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
D. Tees and Lateral: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Lateral," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60.
2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 4 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Base: Synthetic rubber resin.
 4. Solids Content: Minimum 60 percent.
 5. Shore A Hardness: Minimum 60.
 7. Mold and mildew resistant.
 8. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 9. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 10. Service: Indoor or outdoor.
 11. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.
2.5 DUCT LINER

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Johns Manville Linacoustic RC or approved equal.

B. Install per manufacturer’s instructions.

C. Concealed or Exposed Duct: Install 1½ - inch thick acoustic duct liner in the first 15 feet of return- and supply-air duct from all types of air handling units.

D. Ductwork shall be increased in size to account for thickness of liner so that duct sizes shown on Drawings are clear airflow dimensions.

E. Treat edges of shop fabrication and field cuts.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.
PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems:
 a. Supply Ducts: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 b. Return Ducts: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 c. Exhaust Ducts: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 d. Outdoor Air Ducts: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
4. Test for leaks before applying external insulation.
5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.
3.8 START UP

A. Air Balance: Comply with requirements in Division 1 Section for Testing, Adjusting, and Balancing of HVAC systems.

3.9 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
b. Minimum SMACNA Seal Class: A.
c. SMACNA Leakage Class for Rectangular: 6.
d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

D. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.
F. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."

 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."

 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.

 1) Radius-to-Diameter Ratio: 1.5.

 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

G. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-6, "Branch Connections."

 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees."

 a. Velocity 1500 fpm or Lower: Conical tap.
 b. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
2. Barometric relief dampers.
4. Control dampers.
5. Fire dampers.
6. Flange connectors.
7. Turning vanes.
8. Remote damper operators.
9. Duct-mounted access doors.
10. Flexible connectors.
11. Flexible ducts.
12. Duct accessory hardware.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 e. Duct security bars.
 f. Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
D. Source quality-control reports.
E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.3 QUALITY ASSURANCE
B. Comply with AMCA 500-D testing for damper rating.

1.4 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS
A. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Exposed-Surface Finish: Match adjacent ductwork.
C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Nailor Industries Inc.
 3. Pottorff; a division of PCI Industries, Inc.
4. Ruskin Company.

B. Description: Gravity balanced.

D. Maximum System Pressure: 2-inch wg.

E. Frame: 0.052-inch-thick stainless steel, with welded corners and mounting flange.

F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Neoprene, mechanically locked.

I. Blade Axles:
 2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Aluminum.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball or synthetic pivot bushings.

M. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators.
 4. Chain pulls.
 5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20-gage minimum.
 b. Sleeve Length: 6 inches minimum.
 6. Screen Mounting: Rear mounted.
 7. Screen Material: Aluminum.
 8. Screen Type: Bird.
 9. 90-degree stops.

2.3 BAROMETRIC RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Nailor Industries Inc.
3. Pottorff; a division of PCI Industries, Inc.
4. Ruskin Company.

B. Suitable for horizontal or vertical mounting.

D. Maximum System Pressure: 2-inch wg.

E. Frame: 0.064-inch- thick, galvanized sheet steel, with welded corners and mounting flange.

F. Blades:
 1. Multiple, 0.025-inch- thick, roll-formed aluminum.
 3. Action: Parallel.
 5. Eccentrically pivoted.

G. Blade Seals: Neoprene.

H. Blade Axles: Galvanized steel.

I. Tie Bars and Brackets:
 1. Material: Galvanized steel.
 2. Rattle free with 90-degree stop.

J. Return Spring: Adjustable tension.

K. Bearings: Synthetic.

L. Accessories:
 1. Flange on intake.
 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL VOLUME DAMPERS

A. Low-Leakage, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. METALAIRE, Inc.
 b. Nailor Industries Inc.
 c. Pottorff; a division of PCI Industries, Inc.
 d. Ruskin Company.
 2. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Hat shaped.
 b. Stainless-steel channels, 0.064 inch thick.
 c. Mitered and welded corners.
 d. Flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Stainless, roll-formed steel, 0.064 inch thick.
7. Bearings:
 a. Molded synthetic or Stainless-steel sleeve.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
10. Tie Bars and Brackets: Aluminum.
11. Accessories:
 a. Include locking device to hold single-blade dampers in a fixed position without vibration.

B. Jackshaft:
 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. METALAIRE, Inc.
3. Nailor Industries Inc.
4. Ruskin Company.
5. Young Regulator Company.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. Stainless-steel channels, 0.064 inch thick.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 8 inches.
 2. Opposed-blade design.
 4. 0.064 inch thick.

E. Blade Axles: 1/2-inch- diameter; stainless steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:
 1. Molded synthetic or Stainless-steel sleeve.
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. METALAIRE, Inc.
 3. Nailor Industries Inc.
 4. Pottorff; a division of PCI Industries, Inc.
 5. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.
D. Fire Rating: 1-1/2 and 3 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners. Provide frames large enough to eliminate obstruction to airflow when the damper is open.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

K. Access: Provide access door in ductwork for replacement of fusible links and damper-related accessories.

2.7 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ductmate Industries, Inc.
 2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.8 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
3. METALAIRE, Inc.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."

D. Vane Construction: Double wall.

2.9 REMOTE DAMPER OPERATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Young Regulator Company.

B. Description: Cable system designed for remote manual damper adjustment.

C. Tubing: Brass.

D. Cable: Stainless steel.

E. Wall-Box Mounting: Recessed, 2 inches deep.

F. Wall-Box Cover-Plate Material: Stainless steel.

2.10 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Flexmaster U.S.A., Inc.
4. Nailor Industries Inc.
5. Pottorff; a division of PCI Industries, Inc.

1. Door:

 a. Double wall, rectangular.
b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
c. Vision panel.
d. Hinges and Latches: Continuous piano hinge and cam latches.
e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Hinges and two compression latches with outside and inside handles.

C. Pressure Relief Access Door:
 1. Door and Frame Material: Galvanized sheet steel.
 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 5. Doors close when pressures are within set-point range.
 6. Hinge: Continuous piano.
 7. Latches: Cam.
 8. Seal: Neoprene or foam rubber.

2.11 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Flame Gard, Inc.
 3. 3M.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0428-inch stainless steel.

D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.
2.12 FLEXIBLE CONNECTORS

A. UL listed fire-retardant neoprene coated woven glass fiber fabric to NFPA 90A, minimum density 20 ounce per square yard, approximately six (6) inches wide, crimped into metal edging strip. Provide electrical bonding jumpers across flexible connection. Fabricate per SMACNA HVAC Duct Construction Standards – Metal and Flexible.

B. Provide flexible duct connection on all rotating equipment.

2.13 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.

B. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 4-inch wg positive and 0.5-inch wg negative.
3. Temperature Range: Minus 20 to plus 175 deg F.
4. Insulation: Minimum (1) inch thick flexible glass fiber insulation enclosed by seamless aluminum pigmented plastic vapor barrier jacket. Comply with ASHRAE/IESNA 90.1-2004. Maximum 0.23 “k” value at 75°F.
5. Provide flexible duct hanger supports at four feet on center. Maximum sag not to exceed 1/2-inch per foot.

C. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire dampers at all duct penetrations and openings in fire-rated partitions, walls, and floors. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. Upstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. At each change in direction and at maximum 50-foot spacing.
 8. Upstream from turning vanes.
 9. Upstream or downstream from duct silencers.
 10. Control devices requiring inspection.
 11. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:
 1. 24 by 24 inches.
K. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

N. Connect terminal units to supply ducts with rigid ductwork and flexible connectors. Do not use flexible ducts.

O. Connect diffusers or light troffer boots to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

P. Connect flexible ducts to metal ducts with draw bands.

Q. Install duct test holes where required for testing and balancing purposes.

R. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 4. Inspect turning vanes for proper and secure installation.
 5. Operate remote damper operators to verify full range of movement of operator and damper.
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. In-line centrifugal fans.

1.2 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on actual Project site elevations.

B. Operating Limits: Classify according to AMCA 99.

1.3 SUBMITTALS

A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Roof framing and support members relative to duct penetrations.
 2. Ceiling suspension assembly members.
 3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.

C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

D. UL Standard: Power ventilators shall comply with UL 705.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.

B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.

C. Lift and support units with manufacturer's designated lifting or supporting points.

1.6 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set for each belt-driven unit.
PART 2 - PRODUCTS

2.1 IN-LINE CENTRIFUGAL FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Loren Cook Company.

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; with wheel, inlet cone, and motor on swing-out service door.

D. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

E. Accessories:

1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
3. Companion Flanges: For inlet and outlet duct connections.
4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Secure roof-mounting fans to roof curbs with cadmium-plated hardware. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.

C. Install units with clearances for service and maintenance.

D. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."
B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Air Balance: Comply with requirements in Division 1 Section for Testing, Adjusting, and Balancing of HVAC systems.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 233423
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes ceiling- and wall-mounted diffusers, registers, and grilles.
 B. Related Sections include the following:
 1. Division 23 Section "Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 SUBMITTALS
 A. Product Data: For each product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate Drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. METALAIRE, Inc.; Metal Industries Inc.
 2. Nailor Industries of Texas Inc.
 4. Titus.

2.2 SOURCE QUALITY CONTROL
 A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
SECTION 235523 - GAS-FIRED, RADIANT HEATERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes low-intensity, gas-fired radiant heaters.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Shop Drawings:
 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.5 WARRANTY
 A. Manufacturer's Special Warranty: Manufacturer agrees to repair or replace components of radiant heaters that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: All warranty periods listed below are from date of Substantial Completion.
 a. Burner Assembly: Three years.
 b. Combustion and Emitter Tubes: Two years.
 c. Heater Controls: One year(s).
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. UL listed and labeled, with UL label clearly visible on units indicating compliance with ANSI Z83.20/CSA 2.34.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 RADIANT HEATERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Calcana.
2. Roberts-Gordon, Inc.

B. Description: Factory-assembled, overhead-mounted, electrically controlled, low-intensity, infrared radiant heating units using gas combustion. Heater to have all necessary factory-installed wiring and piping required prior to field installation and startup.

C. Fuel Type: Design burner for propane gas having characteristics same as those of gas available at Project site.

D. Burner Assembly:

1. Combustion-Air Inlet: Ducted horizontal to outdoors through sidewall with vent caps.
2. Ignition System: Direct spark with flame rod sensing capabilities and self-diagnostic control module.

E. Combustion Chamber: 4-inch-diameter, aluminized hot-rolled-steel tubing with high-emissivity, high-temperature, corrosion-resistant external finish.

F. Emitter Tube: 4-inch-diameter, aluminized-steel tubing with high-emissivity, high-temperature, corrosion-resistant external finish.

G. Reflector: Polished aluminum, with end caps. Shape to control radiation from tubing for uniform intensity at floor level with 100 percent cutoff above centerline of tubing. Reflectors or entire heater shall accommodate rotational adjustment from horizontal to a minimum 30-degree tilt from vertical.

2.3 CONTROLS AND SAFETIES

A. Gas Control Valve: Two-stage, regulated redundant 24-Vac gas valve that contains pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
B. Failure Safeguards: 100 percent shutoff of gas flow in the event of flame or power failure.
C. Prepurge of 15 seconds of air control system prior to burner ignition.
D. Safety lockout of burner after three consecutive ignition failures.
E. Blocked Vent Safety: Differential pressure switch in burner safety circuit to stop burner operation with high discharge or suction pressure.
F. Control Panel Interlock: Stops burner if panel is open.
G. Indicator Lights: "burner-on" indicator lights.
H. Thermostat: Two-stage, wall-mounted type with 50 to 90 deg F operating range and fan on switch.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Installation: Install gas-fired, radiant heaters and associated gas features and systems according to NFPA 54.
B. Suspended Units: Mount to substrate using manufacturer's rigid mounting kits or custom fabricated brackets.
C. Maintain manufacturers' recommended clearances for combustibles.
D. Gas Piping: Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.
 1. Gas Connections: Connect gas piping to radiant heaters according to NFPA 54.
E. Where installing piping adjacent to gas-fired, radiant heaters, allow space for service and maintenance.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

 1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 2. Verify bearing lubrication.
 3. Verify proper motor rotation.
 4. Test Reports: Prepare a written report to record the following:

 a. Test procedures used.
b. Test results that comply with requirements.
c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

B. Gas-fired, radiant heaters will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.3 ADJUSTING

A. Adjust initial-temperature set points.

B. Adjust burner and other unit components for optimum heating performance and efficiency.

END OF SECTION 235523
SECTION 238239 - UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Propeller unit heaters with electric-resistance heating coils.
2. Wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.2 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Plans, elevations, sections, and details.
2. Location and size of each field connection.
3. Equipment schedules to include rated capacities, furnished specialties, and accessories.

C. Field quality-control test reports.

D. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

PART 2 - PRODUCTS

2.1 PROPELLER UNIT HEATERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Engineered Air Ltd.
2. Rosemex Products.
3. Ruffneck Heaters; a division of Lexa Corporation.

B. Description: An assembly including casing, coil, fan, and motor in vertical or horizontal discharge configuration (as shown on Drawings) with adjustable discharge louver.

C. Comply with UL 2021.

D. Cabinet: Removable panels for maintenance access to controls.

E. Cabinet Finish: Manufacturer's standard baked enamel applied to factory-assembled and-tested propeller unit heater before shipping.

F. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

G. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.

H. Electric-Resistance Heating Elements: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metal sheath with fins no closer than 0.16 inch. Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F at any point during normal operation.

2. Wiring Terminations: Stainless-steel or corrosion-resistant material.

I. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

J. Fan Motors:

1. Motor Type: Permanently lubricated.

K. Control Devices: Wall-mounted thermostat as shown on Drawings.

2.2 WALL AND CEILING HEATERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Berko Electric Heating; a division of Marley Engineered Products.
2. Indeeco.
3. Markel Products; a division of TPI Corporation.
5. QMark Electric Heating; a division of Marley Engineered Products.

B. Description: An assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.

C. Cabinet:
 1. Front Panel: Stamped-steel louver with removable panels fastened with tamperproof fasteners.
 2. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

D. Surface-Mounting Cabinet Enclosure: Steel with finish to match cabinet.

F. Fan: Aluminum propeller directly connected to motor.
 1. Motor: Permanently lubricated, multispeed. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

G. Controls: Wall-mounted thermostat with heavy duty lockable protective cover.

H. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install unit heaters to comply with NFPA 90A.

B. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers. Hanger rods and attachments to structure are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Division 23 Section "Vibration Controls for HVAC Piping and Equipment."
C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

D. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

E. Comply with safety requirements in UL 1995.

F. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.2 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

B. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 238239
SECTION 238323 - RADIANT-HEATING ELECTRIC PANELS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes prefabricated radiant-heating electric panels.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For electric heating panels. Include plans, sections, details, and attachments to other work.

1.3 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.
 B. Sample Warranty: For special warranty.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.5 WARRANTY
 A. Special Warranty: Manufacturer agrees to repair or replace electric heating panels that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR RADIANT-HEATING ELECTRIC PANELS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2.2 PREFABRICATED RADIANT-HEATING ELECTRIC PANELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Berko; Marley Engineered Products.
3. QMark; Marley Engineered Products.

B. Description: Sheet-metal-enclosed panel with heating element suitable for ceiling type where installed. Comply with UL 2021.

1. Panel: Minimum 0.0276-inch-thick, galvanized sheet steel back panel riveted to minimum 0.0396-inch-thick, galvanized sheet steel front panel with fused-on crystalline surface.
2. Housing: Black powder-coated aluminized steel.
4. Electrical Connections: Nonheating, high-temperature, insulated-copper leads, factory connected to heating element.
5. Exposed-Side Panel Finish: Baked-enamel finish in manufacturer's standard paint color as selected by Architect.

C. Wall Thermostat: Bimetal, sensing elements calibrated from 55 to 90 deg F; with contacts suitable for low-voltage circuit, and manually operated on-off switch with contactors, relays, and control transformers.

D. Capacities and Characteristics: Refer to Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install radiant-heating panels level and plumb.

B. Verify locations of thermostats with Drawings and room details before installation. Install devices 48 inches above finished floor.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
1. Operate electric-heating elements through each stage to verify proper operation and electrical connections.
2. Test and adjust controls and safeties.

B. Radiant-heating electric panels will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

D. Remove and replace damaged radiant-heating electric panels.

END OF SECTION 238323
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Sleeves for raceways and cables.
2. Sleeve seals.
4. Common electrical installation requirements.

1.2 SUBMITTALS

A. Product Data: For sleeve seals.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:

 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
a. Advance Products & Systems, Inc.
b. Calpico, Inc.
c. Metraflex Co.
d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
3. Pressure Plates: Carbon steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."
END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.

1.2 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Field quality-control test reports.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
A. Copper Conductors: Comply with NEMA WC 70.
B. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN, XHHW and SO.
C. Multiconductor Cable: Comply with NEMA WC 70 for metal-clad cable, Type MC with ground wire.

2.2 CONNECTORS AND SPLICES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral water stop, unless otherwise indicated.

C. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.4 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex Co.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.

1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
2. Pressure Plates: Carbon steel. Include two for each sealing element.
3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating] of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper feeders. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW, copper single conductors in raceway. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

D. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway.

E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway. Flex conduit or MC cable can be used for fixture whips not to exceed 6 foot.

F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

G. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

H. Class 1 Control Circuits: Type THHN-THWN, in raceway.

I. Class 2 Control Circuits: Power-limited cable, concealed in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 26 Sections "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."
3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

D. Cut sleeves to length for mounting flush with both wall surfaces.

E. Extend sleeves installed in floors 2 inches above finished floor level.

F. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable unless sleeve seal is to be installed.

G. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

H. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."

I. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."

J. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

K. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

L. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.

G. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

H. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

I. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.
3.5 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, for compliance with requirements.
3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.

 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

C. Test Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

D. Remove and replace malfunctioning units and retest as specified above.
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes methods and materials for grounding systems and equipment.

1.2 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Field quality-control test reports.

1.3 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS
 A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
 B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet in diameter.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.

B. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum. Bury at least 24 inches below grade.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

E. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

F. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

G. Metal and Wood Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.
 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Division 26 Section "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
 1. Test Wells: Install at least one test well for each service, unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building’s main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at ground test wells.
 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

B. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 15 ohms.
2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 10 ohms.
3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 5 ohms.
4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).

C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.3 SUBMITTALS

A. Product Data: For steel slotted support systems.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Equipment supports.

C. Welding certificates.

1.4 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.
PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Thomas & Betts Corporation.
 d. Unistrut; Tyco International, Ltd.
 e. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA.
5. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with single-bolt conduit clamps.
D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.
3.4 CONCRETE BASES

A. Construct concrete bases, a minimum of 4 inches above finished floor level, of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base. These are required for all floor mounted electrical switchgear and transformers.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."

C. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

B. See Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks and manholes, and underground handholes, boxes, and utility construction.

C. When required, the PVC-coated, threaded conduit system, shall be specifically designed to prevent corrosive conditions from causing early replacement of the conduit. All conduit, fittings and supporting products shall be by the same manufacturer to ensure that a five-year product guarantee is achieved.

1.2 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, details, and attachments to other work.

C. Installer Certification: For PVC-coated conduit systems, provide installers certification for the Manufacturer’s system that is submitted.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Rigid Steel Conduit: ANSI C80.1.

B. PVC Coated Galvanized Rigid Steel Conduit: ETL Verified PVC-001.

C. IMC: ANSI C80.6.
D. EMT: ANSI C80.3.

E. FMC: Zinc-coated steel.

F. LFMC: Flexible steel conduit with PVC jacket.

G. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.

 2. Fittings for EMT: Steel compression type.

2.2 NONMETALLIC CONDUIT AND TUBING

B. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.

C. LFNC: UL 1660.

D. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.

E. Fittings for LFNC: UL 514B.

2.3 METAL WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.

B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: As indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 PVC-COATED GRC THREADED CONDUIT SYSTEM

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Plasti-Bond
2. Perma-Cote
3. KorKap

B. Description: Complete system of PVC-coated conduit, fittings and supporting products furnished by the same manufacturer.

C. Installation: Installation shall be performed in accordance with the Manufacturer’s Installation Manual. To assure correct installation, the installer shall be certified by the Manufacturer to install coated conduit.

2.5 NONMETALLIC WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hoffman.
2. Lamson & Sessions; Prime Conduit.

B. Description: PVC plastic extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.6 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Thomas & Betts Corporation.
 c. Wiremold Company (The); Electrical Sales Division.

2.7 BOXES, ENCLOSURES, AND CABINETS

A. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

B. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

C. Metal Floor Boxes: Cast or sheet metal, fully adjustable, rectangular.

D. Nonmetallic Floor Boxes: Nonadjustable, round.
E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

F. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.

G. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 3. Hinged door in front cover with flush latch and concealed hinge.
 4. Key latch to match panelboards.
 5. Metal barriers to separate wiring of different systems and voltage.
 6. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed Conduit: Rigid steel conduit.
 2. Concealed Conduit, Aboveground: Rigid steel conduit or IMC.
 3. Underground Conduit: Rigid steel conduit and fittings with factory PVC coating.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 4. Exposed and Subject to Corrosive Atmosphere or Corrosive Products: PVC-coated, Galvanized Rigid Conduit (GRC) and fittings.
 5. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 6. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 7. Damp or Wet Locations: Rigid steel conduit.
 8. Raceways for Optical Fiber or Communications Cable: EMT.
9. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, nonmetallic in damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 2. For EMT conduit system, TPWD requests compression fitting only, No set screw type fitting.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Install conduit in exposed structure ceilings in a neat, orderly and workmanlike manner, and hidden from plain view where possible.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.

J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.
L. Raceways for Optical Fiber and Communications Cable: Install as follows:
 1. 3/4-Inch Trade Size and Smaller: Install raceways in maximum lengths of 50 feet.
 2. 1-Inch Trade Size and Larger: Install raceways in maximum lengths of 75 feet.
 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where otherwise required by NFPA 70.

N. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F, and that has straight-run length that exceeds 25 feet.
 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
 2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change.
 3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.

O. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semi-recessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

Q. Set metal floor boxes level and flush with finished floor surface.

R. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches in nominal diameter. Underground conduit, and conduit larger than 1” under building slabs, to be encased in red concrete.

2. Install backfill as specified in Division 31 Section "Earth Moving."

3. After installing conduit and concrete, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."

4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.

5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits, placing them 24 inches o.c. Align planks along the width and along the centerline of conduit.

3.4 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 260533
SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Direct-buried conduit, ducts, and duct accessories.
 2. Concrete-encased conduit, ducts, and duct accessories.
 3. Handholes and boxes.

1.2 ACTION SUBMITTALS

A. Product Data: For ducts and conduits, duct-bank materials, manholes, handholes, and boxes, and their accessories.

B. Shop Drawings:
 1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include reinforcement and joint details, frame and cover design, and manhole frame support rings.
 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 a. Include dimensioned plans, sections, elevations, accessory locations, and fabrication and installation details.
 b. Include duct entry provisions, including locations and duct sizes.

1.3 INFORMATIONAL SUBMITTALS

A. Duct-Bank Coordination Drawings: Show duct profiles, locations of expansion fittings, and coordination with other utilities and underground structures on Drawings signed and sealed by a qualified professional engineer.

B. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C 858.

C. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.

D. Source quality-control reports.
E. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

1.5 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted by Owner, and then only after arranging to provide temporary electrical service.

B. Ground Water: Assume ground-water level is 36 inches below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR DUCTS AND RACEWAYS

A. Comply with ANSI C2.

2.2 CONDUIT

B. RNC: NEMA TC 2, Type EPC-80-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.3 NONMETALLIC DUCTS AND DUCT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. CertainTeed Corporation.
2. Condux International, Inc.

B. Underground Plastic Utilities Duct: NEMA TC 2, UL 651, ASTM F 512, Type EPC-80 with matching fittings complying with NEMA TC 3 by same manufacturer as the duct.

C. Solvents and Adhesives: As recommended by conduit manufacturer.

D. Duct Accessories:

1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers.
2. Warning Tape: Underground-line warning tape specified in Section 26 05 53 "Identification for Electrical Systems."
3. Concrete Warning Planks: Nominal 12 by 24 by 3 inches in size, manufactured from 3000-psi red concrete and labeled "ELECTRIC."

2.4 PRECAST CONCRETE HANDHOLES AND BOXES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Oldcastle Precast, Inc.
 2. Rinker Group, Ltd.
 3. Utility Concrete Products, LLC.

B. Comply with ASTM C 858 for design and manufacturing processes.

C. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
 1. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing, security bolts as required by the Federal Bureau of Prisons.
 2. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 3. Cover Legend: Molded lettering, "ELECTRIC." As indicated for each service.
 4. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.
 5. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 a. Extension shall provide increased depth of 12 inches.
 b. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.

6. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
7. Windows: Precast, reinforced openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
8. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
9. Handholes 12 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.5 HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. General Requirements for Handholes and Boxes: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
2. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
4. Cover Finish: Non-skid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering, as indicated for each service.
6. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

B. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with covers made of polymer concrete.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carson Industries LLC.
 b. Christy Concrete Products.
 c. Nordic Fiberglass, Inc.

C. High-Density Plastic Boxes: Injection molded of high-density polyethylene or copolymer-polypropylene. Cover shall be made of polymer concrete.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carson Industries LLC.
 b. Nordic Fiberglass, Inc.
 c. PenCell Plastics.

2.6 PRECAST MANHOLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carder Concrete Products.
2. Oldcastle Precast, Inc.
3. Rinker Group, Ltd.
4. Utility Concrete Products, LLC.

B. Comply with ASTM C 858.

C. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.

D. Windows: Precast reinforced openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
E. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.

F. Concrete Knockout Panels: 1-1/2 to 2 inches thick, for future conduit entrance and sleeve for ground rod.

G. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.7 UTILITY STRUCTURE ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bilco Company (The).
2. Christy Concrete Products.
3. Oldcastle Precast, Inc.
5. Utility Concrete Products, LLC.

B. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.

1. Frame and Cover: Weatherproof, with nonskid finish and milled cover-to-frame bearing surfaces; diameter, 29 inches.
2. Cover Legend: Cast in. Selected to suit system.
3. Manhole Chimney Components: Precast concrete rings with dimensions matched to those of roof opening. Seal with mortar or preformed plastic or rubber seals.

C. Manhole Sump Frame and Grate: ASTM A 48/A 48M, Class 30B, gray cast iron.

D. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch-diameter eye; rated 13,000-lbf minimum tension, and 1-by-4-inch bolt.

E. Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch-diameter eye, rated 2500-lbf minimum tension.

F. Pulling-In and Lifting Irons in Concrete Floors: 7/8-inch-diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.

1. Ultimate Yield Strength: 40,000-lbf shear and 60,000-lbf tension.

G. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch ID by 2-3/4 inches deep, flared to 1-1/4 inches minimum at base.

1. Tested Ultimate Pullout Strength: 12,000 lbf minimum.
H. Ground Rod Sleeve: 3-inch, PVC conduit sleeve in manhole floors 2 inches from the wall adjacent to, but not underneath, the ducts routed from the facility.

I. Cable Rack Assembly: Steel, hot-dip galvanized, except insulators.
 1. Stanchions: T-section or channel; 2-1/4-inch nominal size; punched with 14 holes on 1-1/2-inch centers for cable-arm attachment.
 2. Arms: 1-1/2 inches wide, lengths ranging from 3 inches with 450-lb minimum capacity to 18 inches with 250-lb minimum capacity. Arms shall have slots along full length for cable ties and be arranged for secure mounting in horizontal position at any vertical location on stanchions.

J. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.
 1. Stanchions: Nominal 36 inches high by 4 inches wide, with minimum of nine holes for arm attachment.
 2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches with 450-lb minimum capacity to 20 inches with 250-lb minimum capacity. Top of arm shall be nominally 4 inches wide, and arm shall have slots along full length for cable ties.

K. Fixed Manhole Ladders: Arranged for attachment to wall and floor of manhole. Ladder and mounting brackets and braces shall be fabricated from nonconductive, structural-grade, fiberglass-reinforced resin.

L. Portable Manhole Ladders: UL-listed, heavy-duty fiberglass specifically designed for portable use for access to electrical manholes. Minimum length equal to distance from deepest manhole floor to grade plus 36 inches. One required.

M. Cover Hooks: Heavy duty, designed for lifts 60 lbf and greater Two required.

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION
 A. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-80-PVC, in direct-buried duct bank unless otherwise indicated.
 B. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-80-PVC, in direct-buried duct bank unless otherwise indicated.
 C. Underground Ducts Crossing Paved Paths and Driveways or Roadways: RNC, NEMA Type EPC-80-PVC, encased in reinforced concrete.
3.2 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less:
 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf vertical loading.
 5. Cover design load shall not exceed the design load of the handhole or box.

B. Manholes: Precast concrete.
 1. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
 2. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.3 EARTHWORK

A. Excavation and Backfill: Comply with Section 31 00 00 "Earthwork," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Cut and patch existing pavement in the path of underground ducts and utility structures according to the "Cutting and Patching" Article in Section 01 73 00 "Execution."

3.4 DUCT INSTALLATION

A. Install ducts according to NEMA TCB 2.

B. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes, to drain in both directions.

C. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.

D. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

E. Installation Adjacent to High-Temperature Steam Lines: Where duct banks are installed parallel to underground steam lines, perform calculations showing the duct bank will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated
to rise above 40 deg C, and anywhere the duct bank crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

F. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.
2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct banks with calculated expansion of more than 3/4 inch.
3. Grout end bells into structure walls from both sides to provide watertight entrances.

G. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet outside the building wall, without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

H. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

I. Pulling Cord: Install 100-lbf-test nylon cord in empty ducts.

J. Concrete-Encased Ducts: Support ducts on duct separators.

1. Excavate trench bottom to provide firm and uniform support for duct bank. Prepare trench bottoms as specified in Section 31 00 00 "Earthwork" for pipes less than 6 inches in nominal diameter.
2. Depth: Install top of duct bank at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
3. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
4. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than four spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
5. Minimum Space between Ducts: 3 inches between ducts and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and signal ducts.
6. Elbows: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run.

a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
b. Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

7. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

8. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

9. Concrete Cover: Install a minimum of 3 inches of concrete cover at top and bottom, and a minimum of 2 inches on each side of duct bank.

10. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 03 30 00 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

K. Direct-Buried Duct Banks:

1. Excavate trench bottom to provide firm and uniform support for duct bank. Comply with requirements in Section 31 20 00 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.

2. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.

3. Space separators close enough to prevent sagging and deforming of ducts, with not less than four spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches between tiers.

4. Depth: Install top of duct bank at least 36 inches below finished grade unless otherwise indicated.

5. Set elevation of bottom of duct bank below frost line.

6. Install ducts with a minimum of 3 inches between ducts for like services and 6 inches between power and signal ducts.

7. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run.

 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

 b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

8. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections
at end of run and complete backfilling with normal compaction. Comply with requirements in Section 31 20 00 "Earth Moving" for installation of backfill materials.

a. Place minimum 3 inches of sand as a bed for duct bank. Place sand to a minimum of 6 inches above top level of duct bank.

L. Warning Planks: Bury warning planks approximately 12 inches above direct-buried ducts and duct banks, placing them 24 inches o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.

M. Warning Tape: Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.5 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Precast Concrete Handhole and Manhole Installation:

1. Comply with ASTM C 891 unless otherwise indicated.
2. Install units level and plumb and with orientation and depth coordinated with connecting ducts, to minimize bends and deflections required for proper entrances.
3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:

1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch above finished grade.
3. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
4. Where indicated, cast handhole cover frame integrally with handhole structure.

C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

D. Manhole Access: Circular opening in manhole roof; sized to match cover size.

1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.

E. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Section 07 11 13 "Bituminous Dampproofing." After ducts are connected and grouted, and
before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.

F. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, as required for installation and support of cables and conductors and as indicated.

G. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.

H. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.6 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting ducts, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of ducts, and seal joint between box and extension as recommended by manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch above finished grade.

D. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

E. Field cut openings for ducts and conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.7 GROUNDING

A. Ground underground ducts and utility structures according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.

2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 6-inch-long
mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.

3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.9 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION 260543
SECTION 260544 - SLEEVES & SLEEVE SEALS FOR ELECTRICAL RACEWAYS & CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 07 84 13 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.

b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel.

4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 92 00 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 26 05 44
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels.
 8. Miscellaneous identification products.

1.2 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

A. Comply with ANSI A13.1.

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field
 2. Legend: Indicate voltage.
C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Write-On Tags: Polyester tag, 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.2 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

D. Write-On Tags: Polyester tag, 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.3 FLOOR MARKING TAPE

A. 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.4 UNDERGROUND-LINE WARNING TAPE

A. Tape:
1. Detectable.
2. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
3. Printing on tape shall be permanent and shall not be damaged by burial operations.
4. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:
 1. Comply with ANSI Z535.1 through ANSI Z535.5.
 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE, Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

2.5 WARNING LABELS AND SIGNS
B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.
D. Metal-Backed, Butyrate Warning Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 10 by 14 inches.
E. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.6 INSTRUCTION SIGNS
A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.
 1. Engraved legend with black letters on white face.
 2. Punched or drilled for mechanical fasteners.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.7 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

B. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

C. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

B. Apply identification devices to surfaces that require finish after completing finish work.

C. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

D. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

E. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in...
contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

G. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A., and 120 V to ground: Install labels at 10-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend, circuit numbers and system voltage. System legends shall be as follows:

2. Power.
3. Lighting
4. UPS.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and hand holes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 b. Colors for 240/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

E. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.
F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

G. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

H. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

J. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

K. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer or load shedding.

L. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

END OF SECTION 260553
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following lighting control devices:

1. Outdoor photoelectric switches.

B. See Division 26 Section "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Field quality-control test reports.

C. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Lithonia Lighting; Acuity Lighting Group, Inc.
3. Square D; Schneider Electric.
4. Watt Stopper (The).

B. Description: Solid state, with SPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
1. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of photocell to prevent fixed light sources from causing turn-off.
2. Time Delay: 15-second minimum, to prevent false operation.
4. Mounting: Twist lock complying with IEEE C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

C. Description: Solid state, with DPST dry contacts rated for 1800 VA to operate connected load, relay, or contactor coils; complying with UL 773.

1. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range.
2. Time Delay: 30-second minimum, to prevent false operation.

PART 3 - EXECUTION

3.1 WIRING INSTALLATION

A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be 1/2 inch.

B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

C. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.2 IDENTIFICATION

A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.
3.3 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.
2. Operational Test: Verify operation of each lighting control device and adjust time delays.

B. Lighting control devices that fail tests and inspections are defective work.

END OF SECTION 260923
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes distribution panelboards and lighting and appliance branch-circuit panelboards.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For each panelboard and related equipment.

 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.
 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.

C. Field quality-control reports.

D. Panelboard schedules for installation in panelboards.

E. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NEMA PB 1.

C. Comply with NFPA 70.

1.4 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
1. Warranty Period: one year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Enclosures: Flush- and surface-mounted cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Wash-Down Areas: NEMA 250, Type 4X.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

B. Incoming Mains Location: Top and bottom.

C. Phase, Neutral, and Ground Buses: Hard-drawn copper, 98 percent conductivity.

D. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Main and Neutral Lugs: Compression type.
 3. Ground Lugs and Bus Configured Terminators: Compression type.
 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

E. Service Equipment Label: NRTL labeled for use as service equipment for panelboards with one or more main service disconnecting and overcurrent protective devices.

F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

G. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, and listed and labeled for series-connected short-circuit rating by an NRTL.
2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

D. Mains: Circuit breaker or lugs only as indicated.

F. Branch Overcurrent Protective Devices: For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.

1. External Control-Power Source: 24-V control circuit.

F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.
2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Communication Capability: Universal-mounted communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring and Control."
 f. Shunt Trip: 24-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
h. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Receive, inspect, handle, store and install panelboards and accessories according to NECA 407.

B. Mount top of trim 90 inches above finished floor unless otherwise indicated.

C. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

D. Install overcurrent protective devices and controllers not already factory installed.

1. Set field-adjustable, circuit-breaker trip ranges.

E. Install filler plates in unused spaces.

F. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

G. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

H. Comply with NECA 1.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads and incorporating Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Wall-box and ceiling mounted motion sensors.
 3. Snap switches and wall-box dimmers.
 4. Solid-state fan speed controls.
 5. Wall-switch and exterior occupancy sensors.
 6. Communications outlets.
 7. Packaged emergency shut-down and safety system for power, gas and water.

B. See Division 27 Section "Premise Wiring" for workstation outlets, Technology UPS, equipment racks and cable baskets/trays to be furnished by Division 26 contractor.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: List of legends and description of materials and process used for pre-marking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

D. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).
5. Isimet Company; Naples, TX - (903) 897-0737. Laboratory Safety Device System.
6. BLC; a division of Albert Sterling & Associates, Inc.

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper; 5351 (single), 5352 (duplex).
 b. Hubbell; HBL5351 (single), CR5352 (duplex).
 c. Leviton; 5891 (single), 5352 (duplex).
 d. Pass & Seymour; 5381 (single), 5352 (duplex).

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper; GF20.
 b. Pass & Seymour; 2084.

2.4 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper; L520R.
 b. Hubbell; HBL2310.
 c. Leviton; 2310.
 d. Pass & Seymour; L520-R.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell; IG2310.
 b. Leviton; 2310-IG.

2. Description: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.5 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
 b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).
 c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).
 d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way).

 C. Pilot Light Switches, 20 A:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper; 2221PL for 120 V and 277 V.
 b. Hubbell; HPL1221PL for 120 V and 277 V.
 c. Leviton; 1221-PLR for 120 V, 1221-7PLR for 277 V.
 d. Pass & Seymour; PS20AC1-PLR for 120 V.

 2. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON."

D. Key-Operated Switches, 120/277 V, 20 A:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper; 2221L.
 b. Hubbell; HBL1221L.
 c. Leviton; 1221-2L.
 d. Pass & Seymour; PS20AC1-L.
2. Description: Single pole, with factory-supplied key in lieu of switch handle.

E. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Hubbell; HBL1557.
 c. Leviton; 1257.
 d. Pass & Seymour; 1251.

F. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Cooper; 1995L.
 b. Hubbell; HBL1557L.
 c. Leviton; 1257L.
 d. Pass & Seymour; 1251L.

2.6 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.

 1. 600 W; dimmers shall require no de-rating when ganged with other devices.

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.7 FAN SPEED CONTROLS

A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.

 1. Continuously adjustable slider, 1.5 A.
 2. Three-speed adjustable slider, 1.5 A.
2.8 COMMUNICATIONS OUTLETS

A. Telephone Outlet: See “Premise Wiring” Specification for outlet requirements.

B. Combination TV and Telephone Outlet: See “Premise Wiring” Specification for outlet requirements.

2.9 WALL PLATES

A. Single and combination types to match corresponding wiring devices. Finish and color to be approved by Architect.

1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: 0.035-inch thick, satin-finished stainless steel
3. Material for Unfinished Spaces: Galvanized steel
4. Material for Damp Locations: Cast aluminum with hinged lift cover, and listed and labeled for use in "wet locations."

2.10 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used. Finish and color to be approved by Architect.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Rectangular, solid brass with satin finish.

D. Power Receptacle: NEMA WD 6 configuration 5-20R, color to be approved by Architect, unless otherwise indicated.

E. Voice and Data Communication Outlet: Two modular, keyed, color-coded, RJ-45 Category 5e jacks for UTP cable.

2.11 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.

1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.
2. Wiring Devices Connected to Technology Power System: Orange for both isolated ground receptacles and for dedicated ground receptacles. See Premise Wiring Specification.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:
 1. Take steps to ensure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtales.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:
 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtales that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtales for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Occupancy Sensors: Install devices that provide total coverage for the areas shown on the drawings. Add additional sensors if required for coverage.

H. Dimmers:
 1. Install dimmers within terms of their listing.
 2. Verify that dimmers used for fan speed control are listed for that application.
 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.

I. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

3.2 IDENTIFICATION
 A. Comply with Division 26 Section "Identification for Electrical Systems."
 1. Receptacles: Identify panelboard and circuit number from which served. Use durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL
 A. Perform tests and inspections and prepare test reports.
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

 B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fusible switches.
2. Nonfusible switches.
3. Receptacle switches.
4. Shunt trip switches.
5. Molded-case circuit breakers (MCCBs).

1.2 DEFINITIONS

A. NC: Normally closed.

B. NO: Normally open.

C. SPDT: Single pole, double throw.

1.3 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.

C. Field quality-control reports.

D. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.
PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class J fuses are specified.
4. Lugs: Suitable for number, size, and conductor material.
5. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Lugs: Suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I²t response.

E. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

F. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 7. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
2.4 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
3. Wash-Down Areas: NEMA 250, Type 4X.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

C. Install fuses in fusible devices.

D. Comply with NECA 1.

3.2 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 262816
SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Interior solid-state luminaires that use LED technology.
2. Lighting fixture supports.

B. Related Requirements:

1. Section 26 09 41 "Lighting Controls" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color Rendering Index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. LED: Light-emitting diode.

F. Lumen: Measured output of lamp and luminaire, or both.

G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product, arranged by designation.

B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.
1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale and coordinated with each other, using input from installers of the items involved.
 B. Product Certificates: For each type of luminaire.
 C. Sample warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.6 WARRANTY
 A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
 C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
 D. Recessed Fixtures: Comply with NEMA LE 4.
 E. CRI of minimum 80. CCT of 4100 K.
 F. Rated lamp life of 70,000 hours.
 G. Lamps dimmable from 100 percent to 0 percent of maximum light output.
 H. Internal driver.
 I. Nominal Operating Voltage: 120 V ac, 240 V ac, 277 V ac, 12 V dc, or 24 V dc.
 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 J. Housings:
1. Extruded-aluminum housing and heat sink.
2. Clear, anodized, powder-coat or painted finish.

2.2 DOWNLIGHT
A. Manufacturers: Refer to Drawings.
B. Minimum 1,000 lumens. Minimum allowable efficacy of 80 lumens per watt.
C. Universal mounting bracket.
D. Integral junction box with conduit fittings.

2.3 RECESSED LINEAR
A. Manufacturers: Refer to Drawings.
B. Minimum 3,000 lumens. Minimum allowable efficacy of 85 lumens per watt.
C. Integral junction box with conduit fittings.

2.4 STRIP LIGHT
A. Manufacturers: Refer to Drawings.
B. Minimum 750 lumens. Minimum allowable efficacy of 75 lumens per watt.
C. Integral junction box with conduit fittings.

2.5 MATERIALS
A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging
B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
C. Diffusers, and Globes:
 1. Prismatic acrylic
 2. Acrylic: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 3. Glass: Annealed crystal glass unless otherwise indicated.
4. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear anodized powder-coat painted finish.

2.6 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports: Sized and rated for luminaire weight.

E. Flush-Mounted Luminaire Support: Secured to outlet box.

F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
1. Ceiling mount with two 5/32-inch-diameter aircraft cable supports 120 inches in length.
2. Ceiling mount with pendant mount with 5/32-inch-diameter aircraft cable supports adjustable to 120 inches in length.
3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:

1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod wire support for suspension for each unit length of luminaire chassis, including one at each end.
4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:

1. Secure to any required outlet box.
2. Secure luminaire using approved fasteners in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

K. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 265119
SECTION 265219 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with integral or remote emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support, arranged by designation.
B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, coordinated with each other, using input from installers of the items involved:
B. Product Certificates: For each type of luminaire.
C. Sample Warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for recessed luminaires.

F. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast or driver.

1. Emergency Connection: Operate one lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
a. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
b. Humidity: More than 95 percent (condensing).
c. Altitude: Exceeding 3300 feet.

4. Test Push-Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

5. Battery: Sealed, maintenance-free, nickel-cadmium type.
6. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

G. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.

1. Emergency Connection: Operate one fluorescent or LED lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast or driver.
2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
3. Nightlight Connection: Operate lamp in a remote fixture continuously.
5. Charger: Fully automatic, solid-state, constant-current type.
6. Housing: NEMA 250, Type I enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the emergency power unit manufacturer, whichever is less.
7. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
8. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.2 EMERGENCY LIGHTING

A. General Requirements for Emergency Lighting Units: Self-contained units.

B. Emergency Luminaires:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amerlux.
 b. Architectural Lighting Works.
 c. Cooper Lighting, an Eaton business.
 d. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Emergency Luminaires: as indicated on Interior Lighting Fixture Schedule, with the following additional features:
 a. Operating at nominal voltage of 120 V ac or 277 V ac.
 b. Internal emergency power unit.
 c. Rated for installation in damp locations, and for sealed and gasketed fixtures in wet locations.
 d. UL 94 5VA flame rating.

C. Emergency Lighting Unit:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amerlux.
 b. Architectural Lighting Works.
 c. Cooper Lighting, an Eaton business.
 d. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Emergency Lighting Unit: as indicated on Interior Lighting Fixture Schedule.
3. Operating at nominal voltage of 120 V ac or 277 V ac.
4. Wall with universal junction box adaptor.
5. UV stable thermoplastic housing, rated for damp locations.
6. Two LED lamp heads.
7. Internal emergency power unit.
8. External emergency power unit.

2.3 EXIT SIGNS

A. Internally Lighted Signs:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amerlux.
 b. Cooper Lighting, an Eaton business.
 c. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Operating at nominal voltage of 120 V ac or 277 V ac.
3. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
4. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Clear, UV-stabilized acrylic.
 2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Extruded aluminum housing and heat sink.
 2. White anodized or powder coat finish.

E. Conduit: Rigid galvanized steel, minimum 3/4 inch in diameter.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire and emergency power unit weight.
 2. Able to maintain luminaire position when testing emergency power unit.
 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of fixture weight.

E. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach fixtures directly to gypsum board.

F. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling Grid Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.

H. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 265219
SECTION 265619 - LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 2. Luminaire supports.
 3. Luminaire-mounted photoelectric relays.

B. Related Requirements:
 1. Section 26 09 23 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color rendering index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating

E. Lumen: Measured output of lamp and luminaire, or both.

F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of luminaire.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For luminaire supports.
1. Include design calculations for luminaire supports.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale and coordinated.

B. Product Certificates: For each type of the following:

1. Luminaire.
2. Photoelectric relay.

C. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers’ codes.
2. Provide a list of all photoelectric relay types used on Project; use manufacturers’ codes.

1.6 FIELD CONDITIONS

A. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.7 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. UL Compliance: Comply with UL 1598 and listed for wet location.
E. Lamp base complying with ANSI C81.61 or IEC 60061-1.
F. CRI of minimum 70. CCT of 4000 K.
G. L70 lamp life of 70,000 hours.
H. Lamps dimmable from 100 percent to 0 percent of maximum light output.
I. Nominal Operating Voltage: 120 V ac, 240 V ac or 277 V ac.
J. In-line Fusing: On the primary for each luminaire.
K. Lamp Rating: Lamp marked for outdoor use and in enclosed locations.
L. Source Limitations: Obtain luminaires from single source from a single manufacturer.
M. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.

2.2 LUMINAIRE TYPES

A. Area and Site:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Refer to Light Fixture Schedules
 2. Luminaire Shape: As scheduled.
 3. Mounting: As scheduled.
 4. Luminaire-Mounting Height: As scheduled.
 5. Distribution: As scheduled.

B. Canopy:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Refer to Light Fixture Schedules
 2. Shape: See schedule.

2.3 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.
B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.
C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

D. Diffusers and Globes:
 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.

G. Housings:
 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 2. Provide filter/breather for enclosed luminaires.

2.4 FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.
 a. Color: Medium bronze unless otherwise scheduled.

D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.

2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 a. Color: As selected from manufacturer's standard catalog of colors.
 c. Color: As selected by Architect from manufacturer's full range.

2.5 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

A. Comply with NECA 1.

B. Use fastening methods and materials selected and approved by manufacturer.

C. Install lamps in each luminaire.

D. Fasten luminaire to structural support.

E. Supports:

1. Sized and rated for luminaire weight.

2. Able to maintain luminaire position after cleaning and relamping.

3. Support luminaires without causing deflection of finished surface.

4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

F. Wall-Mounted Luminaire Support:
1. Attached to structural members in walls.

H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated. Install luminaires at height and aiming angle as indicated on Drawings.

I. Coordinate layout and installation of luminaires with other construction.

J. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

K. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" and 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.2 INSTALLATION OF INDIVIDUAL GROUND-MOUNTED LUMINAIRES

A. Aim as indicated on Drawings.

B. Install on concrete base with top 4 inches above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 03 30 00 "Cast-in-Place Concrete."

3.3 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 26 05 33 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Verify operation of photoelectric controls.
C. Illumination Tests:

1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):

 a. IES LM-5.
 b. IES LM-50.
 c. IES LM-52.
 d. IES LM-64.
 e. IES LM-72.

2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

D. Luminaire will be considered defective if it does not pass tests and inspections.

E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

END OF SECTION 265619
SECTION 31 1000 - SITE PREPARATION AND DEMOLITION

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. This Section includes furnishing all equipment, materials, and labor for the preparation of this site and removal of existing pavement, trees and underground utilities as shown by the construction documents.

B. Location and protection of utilities.

C. Site Clearing.

1.2 RELATED SECTIONS

A. SECTION 31 2200 – EARTHWORK

B. SECTION 31 2500 – EROSION CONTROL

1.3 SUBMITTALS

A. As required by DIVISION 1 requirements.

1.4 QUALITY CONTROL TESTING

A. As required by DIVISION 1 requirements.

1.5 PROJECT CONDITIONS

A. It shall be the responsibility of the Contractor to obtain a temporary water meter and temporary sanitary sewer facilities for use during construction.

B. Provide erosion and sedimentation controls as shown on the drawings and maintain for the duration of the project. Provide routine maintenance as required to maintain the integrity of controls and protection measures and remove any accumulations of mud, silt and debris, which would jeopardize the integrity of the control measures. Refer to drawings for details.

C. Contractor shall exercise care during operations to confine dust to the immediate work area and shall employ dust control measures to ensure adequate dust control throughout demolition and construction operations.

D. The use of explosives is prohibited.
PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

3.1 PROTECTION OF EXISTING ACTIVE UTILITIES

A. The Contractor shall field verify and coordinate with Owner the location and depths of existing active utilities service lines within the construction limits and shall protect all such utilities from damage during construction operations. Damage to existing utilities to remain shall be repaired at the Contractor’s expense for re-establishing the utilities to their pre-damaged condition.

3.2 PROTECTION OF EXISTING ON AND OFF-SITE PAVING

A. The Contractor shall protect all adjacent on and off-site paving and appurtenances from damage. Any damage shall be repaired at the Contractor’s expense.

3.3 SITE CLEARING

A. Contractor shall remove all trees as shown on the plans. Trees less than six (6) inches in calipers and shrubs located within the construction area shall also be removed. Trees located within and/or adjacent to the area of construction shall be protected per the plans. Contractor shall remove all grasses and topsoil to a minimum depth of four (4) inches.

B. Contractor shall remove all pavements, concrete and brick pavers, and curb and gutter as shown on the plans.

C. Contractor shall remove light standards, bases and foundations to full depth, as shown on the plans. Existing water and gas lines shall be cut and plugged. Existing public meters and public fire hydrants shall be returned to the local governing authority or disposed of at no additional cost to Owner.

D. Exposed subgrade shall be proof rolled with at least a 15-ton pneumatic roller to detect weak soil support areas. All weak soil areas, utility trenches and excavated areas shall be filled and compacted per SECTION 31 2200.

3.4 FINAL CLEANUP

A. Remove all traces of demolished items from the site work area and rough grade all areas that have been disturbed.

B. All removed items shall be legally disposed of off-site at no additional cost to Owner.

END OF SECTION
SECTION 31 2200 - EARTHWORK

PART 1 - GENERAL

1.1 DESCRIPTION

A. This Section includes operations required for the excavation of materials on site, compaction of natural or improved subgrades, finish grading, disposal of excess or unsuitable materials, and other required operations. Earthwork shall conform with dimensions and typical sections shown, and within lines and grades established on Drawings.

1.2 RELATED SECTIONS

A. SECTION 31 1000 – SITE PREPARATION AND DEMOLITION
B. SECTION 32 1313 – CONCRETE PAVING

1.3 REFERENCES

A. ASTM International (ASTM)
 1. ASTM D1557 – Test for Moisture-Density Characteristics of Soil Using Modified Effort
 2. ASTM D2487 – Classification of Soils for Engineering Purposes (Unified Soil Classification)
 3. ASTM D2922 – Test for Density of Soil and Soil-Aggregate in Place by Nuclear Method
 4. ASTM D3017 – Test for Water Content of Soil and Rock in Place by Nuclear Method
 5. ASTM D4318 – Test for Liquid Limit, Plastic Limit and Plasticity Index of Soils
 6. ASTM G51 – Test for Measuring pH of Soil for Use in Corrosion Testing
 7. ASTM G57 – Test for Field Measurement of Soil Resistivity

1.4 EXISTING UTILITIES

A. Where pipes, ducts and structures are encountered in the excavation but are not shown on the drawings, immediately notify the Architect.

1.5 DEFINITIONS

A. Classification: Earthwork materials are classified in accordance with definitions in this Article.
B. General Site Fill: If additional soil is required to achieve the elevations shown on the drawings, it shall be the Contractor’s responsibility to obtain the needed soil from an approved source. Excess soil may be utilized on-site in areas designated by Owner; otherwise, the Contractor shall legally dispose excess soil off-site at no additional cost to Owner.
C. Select Fill: Additional soil beneath sidewalk, pavements, foundations and other structures required to achieve the elevations shown on the drawing. Select fill material shall be as required by the Geotechnical report.

D. Subgrade: Consists of that portion of the surface on which a compacted fill, backfill, pavement or topsoil is placed.

E. Borrow: Material taken from approved off-site sources to make up any deficit of excavated material. Obtain from area that is normally dry and well drained. Borrow does not include topsoil.

F. Finish Grading: Operations required for smoothing disturbed areas that are not overlaid with pavement.

G. Excavation: Excavation of every description and of whatever substances encountered within the limits of the project to the lines and grades indicated on the Drawings.

H. Compaction: Compaction of soil materials shall be measured as a percent of Standard Proctor density as determined in the laboratory by the ASTM D689 and measured in the field by ASTM D2922 and ASTM D3017.

1.6 SUBMITTALS

A. As required by DIVISION 1 requirements.

B. Submit laboratory testing reports for each soil borrow source used to supply general fill and select fill materials.

1.7 QUALITY CONTROL TESTING

A. As required by DIVISION 1 requirements.

B. The Owner may engage a qualified independent testing agency to perform field inspections and tests, and to prepare test reports. When such testing indicates that Contractor’s work does not comply with the specified requirements, additional testing shall be performed by the Owner’s testing agency at no additional cost to the Owner to determine compliance of corrected Work with the specified requirements.

PART 2 - PRODUCTS

2.1 SELECT FILL

A. Select fill material shall be non-expansive clayey sand or sandy clay having a liquid limit (LL) of 35 percent or less and a plasticity index (PI) not less than 4 or greater than 15 and contain no more than 0.5 percent fibrous organic materials, by weight. The select fill shall contain no deleterious material and shall be compacted to a dry density of at least 95 percent of Standard Proctor by ASTM D 689 and a moisture content within minus one (-1) and to plus three (+3) percent of optimum moisture.
B. Obtain select fill material from a source that meets the requirements of the Geotechnical Report.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Objective: As shown on the Drawings, excavate to lines, grades and elevations required for subsequent construction. All excavation shall be made in such manner as to permit all surfaces to be brought to final line and grade within plus or minus 0.1 foot. Over excavation shall be restored at no additional cost to the Owner. Finished grades consistently high or low will not be acceptable and shall be corrected at no additional cost to the Owner.

B. Drainage: During excavation, maintain grades as required to maintain drainage; or, as directed by the Architect, install temporary drains or drainage ditches to intercept or divert surface water and prevent interference or delay of the work.

C. Stockpiling: If at time of excavation it is not possible to place material in the proper section of permanent construction, stockpile the material in Architect approved areas for later use.

D. Stone or Rock: Stone or rock fragments greater than 6" will not be allowed in fills or embankments. Stones or rock fragments larger than 2 inches in their greatest dimension will not be permitted in top 6 inches of subgrade.

3.2 SUBGRADE PREPARATION

A. Surface vegetation, existing pavements, and other deleterious materials shall be stripped in accordance with SECTION 31 10 00.

B. In-situ Soil Subgrades for Pavements: The upper 6 inches of the subgrade soil shall be scarified and compacted to a minimum 95% Standard Proctor maximum laboratory dry density as determined by ASTM D 698 within zero (0) and to plus four (+4) percent of optimum moisture.

C. Fill Soil Subgrades: The exposed in-situ soil shall be proof-rolled using heavy rubber-tired construction equipment; e.g., 25-ton loaded tandem-axle dump truck. Approved on-site clays can be used for pavement and subgrade fill. Soil shall be free of organic materials and other debris, and rock fragments greater than 2-1/2 inches. Fill shall be placed in maximum 8-inch loose lifts and compacted to at least 95% Standard Proctor maximum laboratory dry density as determined by ASTM D 698 at a moisture content within minus one (-1) and to plus three (+3) percent of optimum moisture.

D. Only on-site soils shall be used to fine grade the subgrade – sand shall not be permitted. After fine grading the subgrade, the subgrade moisture content and density shall be maintained until paving is completed. Water and/or re-compact the subgrade as necessary to restore the required moisture and density levels, and to provide a tight, non-yielding subgrade.
3.3 PLACING FILL AND BACKFILL

A. Examination of Subgrade: Do not place fill on any part of the subgrade until Owner has accepted the subgrade preparation.

B. Removing Debris: During the dumping and spreading process, remove all roots, stones and debris that are uncovered in the fill material.

C. Spreading Fill and Backfill: After dumping, spread the material in horizontal layers over the entire fill area. The thickness of each layer before compaction shall not exceed 8 inches. Maintain positive drainage throughout construction. The combined excavation and fill placing operation shall be such that the material when compacted in the fill will be blended sufficiently to secure the best practicable degree of compaction. The suitability of the materials shall be subject to approval of the Owner. After each layer of fill has been spread to the proper depth, it shall be thoroughly manipulated with a disc plow or other suitable and approved equipment until the material is uniformly mixed, pulverized and brought to uniform approved moisture content.

D. Attaining Proper Bond: If, in the opinion of the Owner, the compacted surface of a layer is too smooth to bond with succeeding layers, loosen the surface by harrowing or other approved method before continuing the work.

3.4 MOISTURE CONTROL

A. Intent: The required density is desired on the wet side of the natural moisture content in order to limit post construction swelling of the clay soils.

B. Adjustment: If the moisture content is too high, adjust to within the specified limits by spreading the material and permitting it to dry. Assist the drying process by disk ing or har rowing if necessary. When the material is too dry, sprinkle each layer with water. Work the moisture into the soil by harrowing or other approved method.

3.5 COMPACTION

A. Rough Grade: Compact each layer of fill material with suitable equipment as necessary to achieve an in-place soil density of at least 95% Standard Proctor maximum laboratory dry density as determined by ASTM D698 and a moisture content within minus one (-1) and to plus three (+3) percent of optimum moisture.

1. Field moisture-density of compacted soil layers will be determined by the Owner’s quality control testing laboratory. Additional laboratory testing may be performed to monitor any changes in the soil moisture-density relationship and adjust field testing accordingly.

B. Finish Grade: Place and lightly compact topsoil to achieve finish grades.
3.6 MATERIAL DISPOSAL

A. Excess Excavation Material (soil material free of trees, stumps, logs, brush, roots, rubbish and other objectionable matter which has been accepted by Owner): Remove excess excavated material from the construction site before Pre-final Inspection.

B. Waste Material (material including trees, stumps, logs, brush, roots, rubbish and other objectionable matter which has not been accepted by Owner): Remove waste material from the project site before final Inspection. Legally dispose of material at a licensed site or with written and notarized permission from the property owner for a private disposal site. Pay for all costs associated with waste material removal and disposal.

3.7 TESTING

A. Laboratory Testing and Inspection Services: As specified in DIVISION 1.

B. The Owner may employ a geotechnical laboratory testing agency to monitor soil quality and compaction of fill during construction. The laboratory testing agency will adhere to the following testing procedures:
 1. Inspect and test each lift of select fill material. Do not proceed until test results for previously completed work verify compliance with requirements.
 2. Field density and moisture tests will be performed by the nuclear method in accordance with ASTM D2922 and ASTM D3017.
 3. When field in-place density and moisture tests are performed using nuclear methods, the moisture/density gages will be checked and calibrated to correlate to laboratory density and moisture values as determined by ASTM D689 at the beginning of each work period.
 4. Perform at least one field in-place moisture and density test for every 2,500 square feet of compacted fill per lift, but in no case fewer than five tests for any given lift.

C. Fill material that does not pass field moisture/density testing shall be scarified, watered if necessary, reworked and re-compacted at no additional cost to the Owner. Soil sampling and laboratory testing associated with re-testing of soil materials that are reworked to correct non-compliance with the specified requirements shall not be an additional cost to the Owner.

D. Soil sampling and laboratory testing associated with identification of acceptable borrow sources shall not be an additional cost to the Owner.

END OF SECTION
SECTION 31 2333 - TRENCH EXCAVATION

PART 1 - GENERAL

1.1 DESCRIPTION
A. This Section includes furnishing all the labor, equipment and materials for trench excavation of water system, storm sewer, sanitary sewer system and all other miscellaneous utility piping.

1.2 RELATED SECTIONS
A. SECTION 31 1000 – SITE PREPARATION AND DEMOLITION
B. SECTION 31 2334 – TRENCH BACKFILL
C. SECTION 31 2335 – TRENCH SAFETY SYSTEM
D. SECTION 33 1000 – WATER UTILITIES
E. SECTION 33 3000 – SANITARY SEWERAGE UTILITIES
F. SECTION 33 4000 – STORM DRAINAGE UTILITIES

1.3 SUBMITTALS

B. Submit laboratory testing reports for each type of excavated or imported soil to be used for trench backfill specified in SECTION 31 2334.

1.4 QUALITY CONTROL TESTING
A. Laboratory Testing and Inspection Services: As specified in DIVISION 1.

B. Sampling and laboratory testing of excavated or imported soils to determine Atterberg Limits and moisture-density compaction characteristics.

1.5 SEQUENCING AND SCHEDULING
A. Demolition: Complete applicable work specified in SECTION 31 1000, prior to excavating.

B. Lines and grades to be established by someone under the supervision of a Professional Registered Land Surveyor and who is experienced in laying out utility lines.

C. Trench Support: Install and maintain the trench safety systems as specified in SECTION 31 2335.
PART 3 - EXECUTION

3.1 GENERAL

A. Excavate to lines, grades, and dimensions show as necessary to accomplish Work. Unless otherwise noted in the drawings, excavate to within tolerance of plus or minus 0.1 foot. Allow for forms, working space, granular base, topsoil, and similar items, wherever applicable. Trim to neat lines where concrete is to be deposited against earth.

B. Do not over-excavate without written authorization of the Architect.

3.2 UNCLASSIFIED EXCAVATION

A. Excavation is unclassified. Complete all excavation regardless of the type, nature or condition of the materials encountered.

3.3 TRENCH EXCAVATION

A. Cut banks of pipe trench as nearly vertical as practical. Remove stones as necessary to avoid point bearing. Over-excavate wet or unstable soil from the trench bottom to permit construction of a more stable bed for pipe. Over-excavation shall be filed and tamped with clean dry sand or other approved bedding material to the specified grade.

B. Dig the trench to the proper width as shown on the Drawings. If the trench width below the top of pipe is wider than specified, install additional bedding at no additional cost to the Owner.

C. Accurately grade the trench bottom to provide proper bedding as required.

D. If any excavation is carried beyond the lines and grades required or authorized, fill such space with concrete or other suitable material as directed by Owner at no additional cost to the Owner.

3.4 DEWATERING

A. At no additional cost to the Owner, provide and maintain on-site all necessary equipment, pumps and appurtenances for ensuring that all excavated trenches shall be dewatered prior to and during the installation of any pipe bedding and/or pipe material and until backfill is complete.
3.5 DISPOSAL OF EXCAVATED MATERIAL

A. Disposal of excavated soils shall be performed in a legal manner and be removed from the site unless needed.

B. Disposal of debris resulting from removal of subsurface utilities shall be as specified in SECTION 31 1000.

END OF SECTION
SECTION 31 2334 - TRENCH BACKFILL

PART 1 - GENERAL

1.1 DESCRIPTION

A. This Section includes furnishing all labor, materials and equipment for trench backfilling for site utilities with appurtenances, which occur five feet (5’) outside of all building structures.

1.2 RELATED SECTIONS

A. SECTION 31 1000 – SITE PREPARATION AND DEMOLITION
B. SECTION 31 2200 - EARTHWORK
C. SECTION 33 1000 – WATER UTILITIES
D. SECTION 33 3000 – SANITARY SEWERAGE UTILITIES
E. SECTION 33 4000 – STORM DRAINAGE UTILITIES

1.3 REFERENCES

A. ASTM C33 – Grading Requirements for Coarse Aggregates
B. ASTM D424 – Test for Plastic Limit and Plasticity Index of Soils
C. ASTM D698 – Test for Moisture-Density Characteristics of Soils Using Standard Effort
D. ASTM D1557 – Test for Moisture-Density Characteristics of Soil Using Modified Effort
E. ASTM D2922 – Test for Density of Soil and Soil-Aggregate in Place by Nuclear Method
F. ASTM D3017 – Test for Water Content of Soil and Rock in Place by Nuclear Method
G. ASTM D4318 – Test for Liquid Limit, Plastic Limit and Plasticity Index of Soils

1.4 SUBMITTALS

B. Submit laboratory testing reports for each type of excavated or imported soil to be used for trench backfill specified in this Section.

C. Submit pipe bedding material product data, including material supplier, borrow source identification, and laboratory soil classification and particle gradation analyses.

1.5 QUALITY CONTROL TESTING

A. Comply with the provisions of DIVISION 1.

B. The Owner may engage a qualified independent testing agency to perform field inspections and tests, and to prepare test reports. When such testing indicates that Contractor’s work does not comply with the specified requirements, additional testing shall be performed by the Owner’s testing agency at no additional cost to the Owner to determine compliance of corrected Work with the specified requirements.
PART 2 - PRODUCTS

2.1 PIPE BEDDING

A. Pipe bedding material for water, sewer and storm drainage lines shall be installed per the plans.

B. Pipe shall be backfilled with a crushed stone to 12 inches above the top of pipe. Backfill material shall have a liquid limit (LL) of no greater than 35 and a plasticity index (PI) of no greater than 10. Backfill material shall be graded as follows:

<table>
<thead>
<tr>
<th>Backfill Material Grading</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing 2 in. sieve</td>
<td>100%</td>
</tr>
<tr>
<td>Passing ½-inch sieve</td>
<td>50 to 85%</td>
</tr>
<tr>
<td>Passing No. 4 sieve</td>
<td>20 to 65%</td>
</tr>
<tr>
<td>Passing No. 100 sieve</td>
<td>0 to 5%</td>
</tr>
</tbody>
</table>

2.2 BACKFILL MATERIAL

A. Under Non-Structural Areas: The backfill material placed above the crushed stone bedding shall consist of Select Fill material, meeting the requirements of SECTION 31 22 00.

B. Under Structural Areas: The backfill material placed above the crushed stone bedding shall consist of cement stabilized sand consisting of 1-1/2 sack mix or with flowable fill.

PART 3 - EXECUTION

3.1 GENERAL

A. Grade as necessary to prevent surface water from flowing into trenches or other excavations.

B. Pipe Zone: The pipe zone is defined as including the pipe bedding, backfill to one-half the pipe diameter (the springline) and the initial backfill to 12 inches above the top of the pipe or as otherwise shown on the drawings.

C. Pipe Bedding: Pipe bedding material shall be installed within the pipe zone per the plans.

D. Water in Excavation: Take such precautions as are necessary to keep the work free from ground or surface water. Pumps of adequate capacity or other approved method shall be provided to remove water from the trench in such a manner that it will not interfere with the progress of the work or the proper placing of other work. Ground or surface water will not be allowed to drain into or be pumped into an existing sanitary sewer system. If the work includes connection to an existing sanitary sewer, a temporary watertight plug must be installed and maintained within the pipe for the duration of the contract and bedding material interrupted in a manner approved by the Architect to isolate new construction from the existing system. All costs of handling the water shall be included in the bid and at no additional cost to the Owner.
3.2 UTILITY INSTALLATION

A. Limit clear space on either side of the pipe and below the pipe to the dimensions shown on the drawings. Above the pipe zone, cut as wide as necessary to sheet and brace and properly perform the work. Provide select fill per the drawings.

B. Excavation for Appurtenances: Excavate sufficiently for manholes, utility pull boxes, and similar structures to leave at least 2 feet clear between the outer surfaces and the embankment of timber that may be used to hold and protect the banks. Any over-depth excavation below such appurtenances not directed will be considered unauthorized and will be refilled with sand, gravel, or concrete as directed at no additional cost to the Owner.

3.3 BACKFILLING UNDER NON-STRUCTURAL AREAS

A. The Contractor is not to leave an open trench longer than 200 linear feet on a daily basis.

B. Do not backfill trenches to a point greater than 2 feet above top of pipe until all required pressure tests are performed and utility systems as installed conform to the requirements of appropriate sections. Joints or sewer and water piping shall remain exposed until acceptance of the pressure and leakage tests. Backfill trenches to ground surface with material as specified. Re-open trenches improperly backfilled to depth required for proper compaction. Refill and re-compact as specified, or otherwise correct the condition in a manner approved by Owner.

C. Open Areas:
 1. In the pipe zone, place backfill evenly and carefully around, under and over pipe in layers no thicker than 6 inches. Compact with mechanical hand tampers to 90% density of Standard Proctor maximum dry density, as determined by ASTM D698, until there is a cover of not less than 1 foot over utility lines. Use backfill material as called for on the drawings. Take special care not to damage pipe wrapping or coating.
 2. Above the pipe zone, deposit Low-Plasticity Cohesive Soils in 8 inch layers. The soils shall have a liquid limit (LL) of 35 percent or less and a plasticity index (PI) not less than 5 nor greater than 15. Compact each layer to 90% Standard Proctor maximum dry density as determined by ASTM D698 at -1 to +3 percentage points of optimum moisture content.
 3. All forms, lumber, trash and debris shall be removed from manholes and other utility structures. Backfill for manholes, utility pull boxes, and other utility structures shall be placed symmetrically on all sides in layers no thicker than 8 inches. Each layer shall be compacted to 90% of Standard Proctor maximum dry density as determined by ASTM D698.

3.4 BACKFILLING UNDER STRUCTURAL AREAS

A. The Contractor is not to leave an open trench longer than 200 linear feet on a daily basis.

B. Do not backfill trenches to a point greater than 2 feet above top of pipe until all required pressure tests are performed and utility systems as installed conform to the requirements of appropriate sections. Joints or sewer and water piping shall remain exposed until acceptance of the pressure and leakage tests. Backfill trenches to ground surface with material as specified.
Re-open trenches improperly backfilled to depth required for proper compaction. Refill and re-compact as specified, or otherwise correct the condition in a manner approved by Owner.

C. Pavement Areas
1. In the pipe zone, deposit backfill material as specified on the drawings in layers 6 inches or less. Compact each layer to 95% of Standard Proctor (ASTM D698) maximum laboratory dry density within plus or minus 2 percentage points.
2. Above the pipe zone, backfill with cement-stabilized sand using a 1½-sack mix or flowable fill. Deposit backfill in 6-inch layers.
3. For manholes and other appurtenances within the pavement area, backfill with select fill material to the subgrade elevation. Backfill shall be placed in 6-inch layers and compacted to 95% density according to ASTM D698.

3.5 TESTING

A. Comply with the provisions of DIVISION 1.

B. The Owner may employ a geotechnical laboratory testing agency to monitor soil quality and compaction of fill during construction. The laboratory testing agency will adhere to the following testing procedures:
1. Inspect and test each lift of trench backfill material. Work shall not proceed until test results for previously completed work verify compliance with requirements.
2. Field density and moisture tests will be performed in accordance with ASTM D698.
3. When field in-place density and moisture tests are performed using nuclear methods, the moisture/density gages will be checked and calibrated to correlate to laboratory density and moisture values as determined by ASTM D698, as applicable, at the beginning of each work period.
4. Perform at least one field in-place moisture and density test for every 100 linear feet of trench per lift of backfill, but in no case fewer than three tests for any given lift.

C. Where settling occurs, remove finished surfacing, fill with additional approved material, compact and reconstruct surfacing.

D. Trench backfill that does not pass field moisture/density testing shall be scarified, watered if necessary, reworked and re-compacted at no additional cost to the Owner. Soil sampling and laboratory testing associated with re-testing of soil materials that are reworked to correct non-compliance with the specified requirements shall not be an additional cost to the Owner.

END OF SECTION
SECTION 31 2335 - TRENCH SAFETY SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION
A. This Section specifies furnishing all equipment, materials, and labor for a trench safety system meeting appropriate requirements established in Occupational Safety and Health Administration (OSHA) Safety and Health Regulations, Part 1926, Subpart P - Excavations, Trenching and Shoring.

1.2 RELATED SECTIONS
A. SECTION 31 1000 - SITE PREPARATION AND DEMOLITION
B. SECTION 31 2333 - TRENCH EXCAVATION
C. SECTION 31 2334 - TRENCH BACKFILL

1.3 REFERENCES
A. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)
B. American Welding Society (AWS)
 1. D1.1 – Structural Welding Code.

1.4 SUBMITTALS
B. Submit drawings showing the design and details of proposed sheeting, shoring and bracing, and the proposed sequence of excavation and backfill to Owner for review.
PART 2 - PRODUCTS

2.1 TIMBER
A. Trench sheeting materials shall be a minimum of 2” in thickness, solid and sound, free from weakening defects such as loose knots and splits

2.2 STEEL SHEET PILING
A. Steel sheet piling shall conform to the following specifications:
 1. ASTM A328
 2. ASTM A572, Grade 50
B. Steel for stringers and cross braces shall conform to ASTM A588.

2.3 TRENCH BOXES
A. Portable trench boxes shall be constructed of steel conforming to ASTM A36.

PART 3 - EXECUTION

3.1 GENERAL
A. Trench safety system shall be constructed, installed and maintained in accordance with the OSHA regulations and to the design prepared by the Contractor’s Registered Professional Engineer to prevent death or injury to personnel or damage to structures in or near these trench excavations.
B. Contractor’s Registered Professional Engineer shall be licensed in the State of Texas.

3.2 INSTALLATION
A. Installation of trench safety system shall meet OSHA regulations and the Contractor’s Registered Professional Engineer’s requirements.

3.3 SUPERVISION
A. Provide competent supervisory personnel at each trench while work is in progress to ensure Contractor’s methods, procedures, equipment and materials pertaining to the safety systems in this item are sufficient to meet requirements of OSHA regulations.
3.4 MAINTENANCE OF SAFETY SYSTEM

A. The safety system shall be maintained in the condition required by the OSHA regulations or as specified by the Contractor’s Registered Professional Engineer.

B. Take all necessary precautions to ensure the safety systems are not damaged during their use.

3.5 INSPECTION

A. Make daily inspection of trench safety system to ensure that the system meets OSHA requirements.

3.6 REMOVAL

A. Bed and backfill pipe to a point at least one foot above top of pipe prior to removal of any portion of trench safety system, but in no case allow construction personnel or other persons in the trench unless the trench conditions comply with OSHA requirements.

END OF SECTION
SECTION 31 2500 - EROSION CONTROL

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. Furnish all the necessary materials, labor, tools, equipment, and other incidentals required to design, install, maintain, and remove after construction all temporary erosion control devices shown in accordance with the Storm Water Pollution Prevention Plan. The purpose of erosion control is to prevent sediment-laden runoff from leaving the construction area at any time.

B. Establish permanent or temporary grass, as necessary to prevent erosion during construction.

1.2 RELATED WORK

A. SECTION 31 1000 – SITE DEMOLITION AND DEMOLITION

B. SECTION 31 2200 – EARTHWORK

1.3 SUBMITTALS

A. As required by DIVISION 1

1.4 REFERENCE STANDARDS

A. American Society for Testing and Materials, ASTM.

1.5 TYPES OF EROSION CONTROL

A. Organic Filter Tube: The purpose of a filter tube is to slow the flow of sediment-laden runoff from disturbed areas. Sediment and other pollutants are filtered out as the water flows through the tube and organic media. Unless otherwise noted, the filter tube shall have a minimum diameter of twelve (12) inches.

B. Stabilized Construction Entrance: The purpose of constructing a temporary stabilized construction entrance is to prevent sediment from leaving the project site and becoming a nuisance on a paved street. Install a temporary stabilized construction entrance at any point where traffic will be entering or leaving a construction site to a paved surface, thus greatly reducing, or eliminating the tracking or flow of sediment onto the paved surface.
C. Silt Fence: A silt fence serves the purpose to intercept and detain water borne sediment from unprotected areas to a limited extent. Silt Fences are the most common means of erosion control used.

PART 2 - PRODUCTS

2.1 ORGANIC FILTER TUBE

A. Chipped site vegetation, composted mulch or wood-based mulch with particle size of fine (1/4” to 1/2”) and coarse grades with no particulate sizes exceeding 3” in length. The mixture ratio should be or may include greater fraction of coarser blend materials (1:2) (fine: coarse).

2.2 STABILIZED CONSTRUCTION ENTRANCE

A. Use clean, open graded, 3” to 6” diameter crushed concrete or concrete modular unit (CMU).

2.3 SILT FENCE:

A. Use silt fence fabric of nylon reinforced polypropylene fabric conforming to NTCOG Item 2.24.4. Provide galvanized steel fence posts according to NTCOG Item 2.8.2(b)(2). Use woven wire support of W1.4 x W1.4, 4 inches x 4 inches, zinc-coated steel woven wire fence conforming to ASTM A116. Standard 2 inch x 2 inch chain link fence is acceptable as well as other welded steel fabrics consisting of equal or greater gauge wire and equal or smaller spacing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Silt Fence:
 1. Installation on Soil: Set posts a minimum of 1 foot deep and space not more than 6 feet on center. Cut a 6-inch wide trench 6 inches deep at the toe of the fence and backfill with earth or gravel. Overlap fabric a minimum of 3 feet and join such that no leakage or bypass occurs.
 2. Installation on Pavement: Weigh fabric with rock on the upstream side to prevent flow from seeping under the fence.
 3. Make inspection weekly and after each major storm event. Repair or replace promptly as needed.
 4. Remove and dispose of silt when it reaches a depth of half the height of the fence. (Replace fence if damaged due to silt build-up).

B. Organic Filter Tube:
 1. Place tubes on slopes less than 5% or at the bottom of steeper slopes, less than or equal to 3:1 up to 25 ft. long. Areas with greater flows or where maximum sediment control is desired, a larger diameter of tube should be used. If a slope exceeds 4:1, it may be necessary to stake tube at 6 ft. to 8 ft. intervals.
2. Tube diameter shall be a minimum of 10 inches to 12 inches, or as specified on plans.

C. Stabilized Construction Entrance:
 1. The minimum length of the stabilized entrance is 30 feet for work that is less than 150 feet from the paved surface and at least 50 feet for all other cases. Thickness is 6 inches. The width cannot be less than the full width of all points of ingress and egress.
 2. When necessary clean all vehicles to remove sediment before they enter onto a paved area. Remove all sediment spilled, dropped, washed or tracked onto the paved surface immediately.
 3. Properly grade the entrance or incorporate a drainage swale to prevent runoff from leaving the construction site.

3.2 MAINTENANCE AND REMOVAL

A. The Contractor is responsible for maintaining all erosion control devices and activities during the course of construction. The Owner or Owner’s Designated Agent has the discretion to inspect the site periodically and if any deficiencies are found, the Contractor must correct to his/her satisfaction.

B. Watering for establishing vegetation of all disturbed areas shall be continued during construction until the project is accepted.

C. Prior to final acceptance of the project, the Contractor is to vegetate all disturbed areas within the project’s construction limits.

D. Once vegetated areas are established and agreed to by the Engineer, the Contractor shall remove all erosion control measures and dispose of all accumulated trapped silt from the site. Additionally, the Contractor shall restore the site to its original condition, or the condition shown on the Contract Drawings.

END OF SECTION
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Soil treatment with termiticide.
 2. Polymer barrier fittings with termiticide for installation around utility penetrations.
B. Related Sections:
 1. Section 061000 "Rough Carpentry" for wood preservative treatment by pressure process.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of termite control product.
 1. Include the EPA-Registered Label for termiticide products.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Product Certificates: For termite control products, from manufacturer.
C. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:
 1. Date and time of application.
 2. Moisture content of soil before application.
 3. Termiticide brand name and manufacturer.
 4. Quantity of undiluted termiticide used.
 5. Dilutions, methods, volumes used, and rates of application.
 6. Areas of application.
 7. Water source for application.
D. Wood Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:
1. Date and time of application.
2. Termiticide brand name and manufacturer.
3. Quantity of undiluted termiticide used.
4. Dilutions, methods, volumes used, and rates of application.
5. Areas of application.

E. Polymer Barrier Fittings with Termiticide Application Report: After installation of polymer barrier fittings with termiticide is completed, submit report for Owner's records and include the following:

1. Plan drawing showing number and locations of each type of polymer barrier fitting with termiticide.
2. Termiticide brand name and manufacturer.
3. Schedule of inspections for one year from date of Substantial Completion.

F. Warranties: Sample of special warranties.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having jurisdiction to apply termite control treatment and products in jurisdiction where Project is located, and who employs workers trained and approved by manufacturer to install manufacturer's products, and who is accredited by manufacturer.

B. Regulatory Requirements: Formulate and apply termiticides and termiticide devices according to the EPA-Registered Label.

C. Source Limitations: Obtain termite control products from single source from single manufacturer.

D. Preinstallation Conference: Conduct conference at Project site.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and requirements of authorities having jurisdiction.

B. Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil under footings, grade beams, and ground-supported slabs before construction.

C. Apply wood treatment after framing, sheathing, and exterior weather protection is completed but before electrical and mechanical systems are installed.

D. Install polymer barrier fittings with termiticide around utility penetrations prior to pouring concrete and after installation and inspection of plumbing and electrical pipes and conduits, slab vapor barrier, and concrete slab reinforcement.
1.7 WARRANTY

A. Soil Treatment Special Warranty: Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work, consisting of applied soil termiticide treatment, will prevent infestation of subterranean termites. If subterranean termite activity or damage is discovered during warranty period, re-treat soil and repair or replace damage caused by termite infestation.

1. Warranty Period: Five years from date of Substantial Completion.

B. Polymer Barrier Fittings with Termiticide Special Warranty: Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work, consisting of installation of polymer barrier fittings with termiticide, will prevent infestation of subterranean termites. If subterranean termite activity or damage is discovered during warranty period, re-treat and repair or replace damage caused by termite infestation.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOIL TREATMENT

A. Termiticide: Provide an EPA-Registered termiticide, complying with requirements of authorities having jurisdiction, in an aqueous solution formulated to prevent termite infestation. Provide quantity required for application at the label volume and rate for the maximum termiticide concentration allowed for each specific use, according to product's EPA-Registered Label.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. BASF Corporation, Agricultural Products; Termidor.
 b. Bayer Environmental Science; Premise 75.
 c. FMC Corporation, Agricultural Products Group; Dragnet FT.
 d. Syngenta; Demon TC.

2. Service Life of Treatment: Soil treatment termiticide that is effective for not less than five years against infestation of subterranean termites.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for moisture content of soil per termiticide label requirements, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.

B. Proceed with application only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's written instructions for preparation before beginning application of termite control treatment. Remove all extraneous sources of wood cellulose and other edible materials such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.

B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated except previously compacted areas under slabs and footings. Termiticides may be applied before placing compacted fill under slabs if recommended in writing by termiticide manufacturer.

1. Fit filling hose connected to water source at the site with a backflow preventer, complying with requirements of authorities having jurisdiction.

3.3 APPLICATION, GENERAL

A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's EPA-Registered Label for products.

3.4 APPLYING SOIL TREATMENT

A. Application: Mix soil treatment termiticide solution to a uniform consistency. Provide quantity required for application at the label volume and rate for the maximum specified concentration of termiticide, according to manufacturer's EPA-Registered Label, to the following so that a continuous horizontal and vertical termiticidal barrier or treated zone is established around and under building construction. Distribute treatment evenly.

1. Slabs-on-Grade and Basement Slabs: Underground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.
2. Foundations: Adjacent soil, including soil along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers, piers, and chimney bases; and along the entire outside perimeter, from grade to bottom of footing. Avoid soil washout around footings.
3. Crawlspace: Soil under and adjacent to foundations as previously indicated. Treat adjacent areas including around entrance platform, porches, and equipment bases. Apply overall treatment only where attached concrete platform and porches are on fill or ground.
5. Penetrations: At expansion joints, control joints, and areas where slabs will be penetrated.

B. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.
C. Protect termiticide solution, dispersed in treated soils and fills, from being diluted until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.

D. Post warning signs in areas of application.

E. Reapply soil treatment solution to areas disturbed by subsequent excavation, grading, landscaping, or other construction activities following application.

3.5 INSTALLING POLYMER BARRIER FITTINGS

A. Remove any pipe wrap material so that the polymer barrier fittings can be applied directly to the pipe or conduit. After installing the barrier, reapply pipe wrap material both below and above the blocker to protect the pipe from contact with concrete.

B. Install polymer barrier fittings around each utility pipe and conduit penetrating concrete slab according to the EPA-Registered Label for the product and manufacturer's written instructions.

END OF SECTION 313116
SECTION 32 1216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The Terms and Conditions of the Contract, including Supplementary and Special Conditions of the Contract, and the Drawings apply to this Section.

1.2 SUMMARY

A. Section includes furnishing and installing asphalt concrete paving including prime coat, tack coats, and related work as shown and detailed on the Drawings.

1.3 REFERENCES

A. Geotechnical Report

B. TxDOT: Texas Department of Transportation Standard Specifications for Construction of Highways, Streets and Bridges, TxDOT 2004 edition
 1. TxDOT Item 340 – Dense-Graded Hot-Mix Asphalt

 1. ASTM D946 – Standard Specification for Penetration-Graded Asphalt Cement for Use in Pavement Construction
 2. ASTM D977 - Standard Specification for Emulsified Asphalt
 3. ASTM D2027 – Standard Specification for Cutback Asphalt (Medium-Curing Type)
 4. ASTM D2397 - Standard Specification for Cationic Emulsified Asphalt

1.4 SUBMITTALS

A. Contractor shall certify the mixing plant will conform to the requirements of TxDOT Item 340.

B. Mix design reports for Type D mixture in accordance with TxDOT Test Method Tex-204-F.

1.5 DELIVERY, STORAGE AND HANDLING

A. Asphaltic Concrete Material shall be hauled in tight trucks previously cleaned of all dirt and foreign material with the load completely covered by canvas.
PART 2 - PRODUCTS

2.1 PRIME COAT
 A. Provide grade MC-30 in accordance with ASTM D2027.

2.2 TACK COAT
 A. Tack Coat: ASTM D977 emulsified asphalt, or ASTM D2397 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.

2.3 HOT MIX ASPHALTIC CONCRETE SURFACE COURSE
 A. The asphaltic concrete surface course shall be plant mixed, hot laid TxDOT Item 340 Type D (Fine Graded Surface Course) meeting the master specifications requirements in listed below. The mix is to be designed for a stability of 40 (minimum) when tested in accordance with TxDOT Test Method Tex-208-F. The asphalt cement content by percent of total mixture weight shall fall within a tolerance of -0.2 to +0.4 percent asphalt cement from the specific mix. The grade of asphalt cement shall be PG 64-22, ASTM D946. In addition, the mix shall be designed so that 75 to 85 percent of the voids in the mineral aggregate (VMA) are filled with asphalt cement. The coarse aggregate shall be crushed limestone, not gravel. Aggregates known to be prone to stripping should not be used in the hot mix. The mix shall have at least 70 percent strength retention when tested in accordance with Tex-531-C.

<table>
<thead>
<tr>
<th>Master Gradation Bands (% Passing by Weight or Volume)</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>-</td>
</tr>
<tr>
<td>1/2"</td>
<td>98.0 – 100.0</td>
</tr>
<tr>
<td>3/8"</td>
<td>85.0 – 100.0</td>
</tr>
<tr>
<td>#4</td>
<td>50.0 – 70.0</td>
</tr>
<tr>
<td>#8</td>
<td>35.0 – 46.0</td>
</tr>
<tr>
<td>#30</td>
<td>15.0 – 29.0</td>
</tr>
<tr>
<td>#50</td>
<td>7.0 – 20.0</td>
</tr>
<tr>
<td>#200</td>
<td>2.0 – 7.0</td>
</tr>
</tbody>
</table>

2.4 HOT MIX ASPHALTIC CONCRETE BASE COURSE
 A. The asphaltic concrete base course shall be plant mixed, hot laid TxDOT Item 340 Type A (Coarse Base) or Type B (Fine Base) meeting the master specifications requirements in listed below. The mix is to be designed for a stability of 40 (minimum) when tested in accordance with TxDOT Test Method Tex-208-F. The asphalt cement content by percent of total mixture weight shall fall within a tolerance of -0.2 to +0.4 percent asphalt cement from the specific mix. The grade of asphalt cement shall be PG 64-22, ASTM D946. In addition, the mix shall be designed so to have a minimum 12.0 (Type A) or 13.0 (Type B) percent voids in mineral aggregate (VMA). Aggregates known to be prone to stripping should not be used in the hot mix. The mix shall have at least 70 percent strength retention when tested in accordance with Tex-531-C.
2.5 EQUIPMENT

A. All equipment shall comply with the requirements below:

1. Asphalt Paver: Furnish a paver that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Ensure paver does not support the weight of any portion of hauling equipment other than the connection. Provide loading equipment that does not transmit vibration or other motions to the paver that adversely affect the finished pavement quality. Equip the paver with an automatic, dual, longitudinal-grade control system and an automatic, transverse-grade control system.

 a. Tractor Unit: Supply tractor unit that can push or propel vehicles, dumping directly into the finishing machine to obtain the desired lines and grades to eliminate any hand finishing. Equip the unit with a hitch sufficient to maintain contact between the hauling equipment’s rear wheels and the finishing machine’s pusher rollers while mixture is unloaded.

 b. Screed: Provide a heated compacting screed that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Screed extensions must provide the same compacting action and heating as the main unit unless otherwise approved.

 c. Grade Reference: Provide a grade reference with enough support that the maximum deflection does not exceed 1/16 in. between supports. Ensure that the longitudinal controls can operate from any longitudinal grade reference including a string line.
ski, mobile string line, or matching shoes. Furnish paver skis or mobile string line at least 40 ft. long unless otherwise approved.

2. Material Transfer Devices: Ensure the devices provide a continuous, uniform mixture flow to the asphalt paver.

3. Remixing: When required, provide equipment that includes a pug mill, variable pitch augers, or variable diameter augers operating under a storage unit with a minimum capacity of 8 tons.

4. Motor Grader: When allowed, provide a self-propelled grader with a blade length of at least 12 ft. and a wheelbase of at least 16 ft.

5. Handheld Infrared Thermometer: Provide a handheld infrared thermometer meeting the requirements of Tex-244-F.

6. Straightedges and Templates: Furnish 10 ft. straightedges and other templates as required or approved.

7. Coring Equipment: When coring is required, provide equipment suitable to obtain a pavement specimen meeting the dimensions for testing.

8. Rollers:
 a. Pneumatic Tire Rollers – Pneumatic tire rollers consist of rubber wheels on axels mounted in a frame with either a loading platform or body suitable for ballast loading. Arrange the rear tires to cover the gapes between adjacent tires of the forward group. Furnish rollers capable of forward and backward motion. Compact asphalt pavements and surface treatments with a roller equipped with smooth-tread tires. Compact without damaging the surface. When necessary, moisten the wheels with water or an approved asphalt release agent. Select and maintain the operating load and tire pressure within the range of the manufacturer’s charts or tabulations to attain maximum compaction. Furnish the manufacturer’s charts or tabulations showing the contact areas and contact pressures for the full range of loadings for the particular tires furnished. Maintain individual tire inflation pressures within 5 psi of each other. Provide uniform compression under all tires.

PART 3 - EXECUTION

3.1 INSPECTION

A. Proof-roll prepared subbase and base course surfaces to check for unstable areas and areas requiring additional compaction or which have become wet beyond acceptable limits. Do not begin paving work until deficient areas have been corrected and are ready to receive paving.

3.2 PRIME COAT

A. Conditions
 1. Prime coat shall not be applied when the air temperature is below 60 degrees F and falling, but it may be applied when the temperature is above 50 degrees F and is rising; the air temperature being taken in the shade and away from artificial heat.

B. Preparation
 1. Clean the surface by sweeping with a vacuum sweeper or other approved methods as directed by the Engineer.
C. Application
 1. Apply with an approved sprayer. Prime coat shall be applied at a rate not to exceed 0.20 gallons per square yard over compacted base material, smoothly and evenly, and shall be cured for 24 hours minimum. During the application of prime coat care shall be taken to prevent splattering of adjacent pavement, curbs, gutters or structures.

3.3 TACK COAT

A. Preparation
 1. Clean the surface by sweeping with a vacuum sweeper or other approved methods as directed by the Engineer.

B. Application
 1. Apply with an approved sprayer. Tack coat shall be applied at a rate not to exceed 0.10 gallons per square yard over the surface, smoothly and evenly. All contact surfaces of curbs and surfaces and all joints shall be painted with a thin uniform coat of the tack coat material. During the application of prime coat care shall be taken to prevent splattering of adjacent pavement, curbs, gutters or structures.

3.4 SURFACE COURSE

A. Conditions
 1. The asphaltic mixture, when placed with a spreading and finishing machine, or the tack coat shall be placed when the air temperature is at least 50 degrees F.
 2. The asphaltic mixture, when placed with a motor grader, shall not be placed when the air temperature is below 55 degrees F and is falling, but may be placed when the air temperature is above 45 degrees F and is rising.
 3. The air temperature shall be taken in the shade and away from artificial heat.
 4. If, after being discharged from the mixer and prior to placing, the temperature of the asphaltic mixture falls below 200 degrees F, it will be rejected.

B. The surface course shall be the thickness as shown on the drawings and spread in one lift. Spread the lift in such a manner that when compacted, the finished course will be smooth, of uniform density, and to section, line and grade as shown on the drawings. All surface course placement shall meet the requirements of TxDOT Item 300.

3.5 ROLLING

A. Use a Troxler nuclear density gauge to determine rolling pattern.

B. Begin rolling while pavement is still hot and as soon as it will bear the roller without undue displacement or hair cracking. To prevent adhesion of surface mixture to the roller, keep wheels properly moistened with water. Excessive use of water will not be permitted. Complete compaction before mix temperature cools to 185 degrees F.

C. Compress the surface thoroughly and uniformly, first with power-driven, 3-wheel, or tandem rollers weighing a minimum of 12 tons. Obtain subsequent compression by starting at the side and rolling longitudinally toward the center of the pavement, overlapping on successive trips by
at least on-half width of rear wheels. Make alternate trips slightly different in length. Continue rolling until not further compression can be obtained and all rolling marks are eliminated.

D. Use a tandem roller for the final rolling. Double coverage with an approved pneumatic roller on asphaltic concrete surface is acceptable after flat wheel and tandem rolling has been completed.

E. All rolling compaction shall be completed before the mixture temperature drops below 175 degrees F.

3.6 HAND TAMPING

A. Along walls, curbs, headers and similar structures, and in all locations not accessible to rollers, compact the mixture thoroughly with a vibrating plate compactor.

3.7 DENSITY

A. Compact the surface course to the density between 91 and 95 percent of the maximum theoretical density as measured by TEX-227-F. If, during the construction, the results of density tests show that either the compacted base course, binder course or surface course has a density less than specified, an additional rolling with a 3-wheel or pneumatic roller will be required. Such a rolling shall be done before the mix cools if it is to be successful.

3.8 SURFACE TESTS

A. The Contractor shall conduct surface testing. The completed surface, when tested with a 16 foot straightedge laid parallel to the center line of the pavement, shall show no deviation in excess of 3/16 inch per foot from the nearest point of contact. The maximum ordinate measured from the face of the straightedge shall not exceed 1/4 inch at any point. Furnish approved templates for checking subgrade in finished sections. The strength and rigidity of templates shall be such that if a support is transferred to center, no deflection is excess of 1/8 inch will be observed.

3.9 CONSTRUCTION JOINTS

A. Place courses as nearly continuously as possible. Pass the roller over unprotected ends of the freshly laid mixture only when the mixture has become chilled. When work is resumed, cut back the laid material to produce a slightly beveled edge for the full thickness of the course. Remove old material which has been cut away and lay the new mix against the fresh cut.

3.10 DEFECTIVE PAVEMENT

A. Recompact pavement sections not meeting specified densities or replace them with new asphaltic concrete material. Replace with new material section of surface course pavement not meeting surface test requirements or having an unacceptable surface texture. Patch asphalt pavement sections in accordance with procedures established by the Asphalt Institute. Replace asphalt pavement sections which did not meet the specifications.
3.11 DEFICIENT SURFACE THICKNESS

A. Any area of asphalt surface found deficient in thickness by more than 0.25 inches, and if low and causing ponding, shall be removed and replaced, at the Contractor's expense, with asphalt surface of the thickness shown on the drawings. Care should be taken not to damage or remove the pavement below the asphalt surface. Should damage to the pavement below the asphalt surface occur, it shall also be removed and replaced at the Contractor's expense.

B. No additional payment over the contract price will be made for any asphalt surface of a thickness exceeding that required by the drawings.

3.12 QUALITY CONTROL TESTING

A. Perform, document and report the following quality control tests.

B. Bulk specific gravity tests of the in-place, compacted bituminous mixtures in accordance with TxDOT Test Method Tex-207-F, Part I.

C. For Type D mixture take three (3) cores for each 500 tons placed.

END OF SECTION
SECTION 32 1313 – CONCRETE PAVING

PART 1 - GENERAL

1.1 DESCRIPTION
 A. Furnish all labor and materials necessary for forming and placing reinforced concrete pavement to the lines and grades shown on the drawings associated with this project.

1.2 RELATED SECTIONS
 A. SECTION 31 2200 – EARTHWORK

1.3 REFERENCES
 A. ASTM International (ASTM):
 1. A525 – Steel Sheet, Zinc-Coated (Galvanized)
 2. A615 – Standard Specification for Deformed Billet-Steel Bars for Concrete Reinforcement
 3. C31 – Practice for Making and Curing Concrete Test Specimens in the Field
 5. C94 – Ready-Mixed Concrete
 6. C309 – Liquid Membrane-Forming Compounds for Curing Concrete
 8. D1751 – Preformed Expansion Joint Fillers for Concrete and Structural Construction

1.4 SUBMITTALS

 B. Submit concrete mix designs for each class of concrete, including historical data for the concrete mix used in the same geographical area where the project is located.

1.5 QUALITY CONTROL TESTING
 A. Comply with the provisions of DIVISION 1.

 B. The Owner may engage a qualified independent testing agency to perform field inspections and tests, and to prepare test reports. When such testing indicates that Contractor’s work does not comply with the specified requirements, additional testing shall be performed by the Owner's testing agency at no additional cost to the Owner to determine compliance of corrected Work with the specified requirements.
PART 2 - PRODUCTS

2.1 PORTLAND CEMENT CONCRETE

A. Classification and mix design shall be as follows:
 1. Concrete strength shall be designed to produce a minimum 3500 psi at drives and 3000 psi
 at light duty parking areas, minimum compressive strength at 28 days, unless otherwise
 shown on the drawings. Refer to City Specific concrete, subgrade and reinforcement
 specifications for pavement located in the City Right Of Way.
 2. Maximum size of aggregates 1-1/2 inches.
 3. Slump shall range from 1-1/2 to 4 inches.
 4. Air entrainment concrete mixture shall have an air content by volume of 5 percent plus or
 minus 1 percent.
 5. Concrete shall be mixed conforming with ASTM C94.
 6. The concrete mix shall be designed by a commercial testing laboratory, and submitted for
 approval.
 7. The use of Type III cement shall not be permitted without written permission from the
 Engineer when Type III cement is not shown on the Drawings.

2.2 REINFORCEMENT

A. Reinforcing steel shall meet the specifications of ASTM A615, Grade 60. Bars shall be deformed
 billet steel free of defects.

2.3 BOARD FILLER

A. Materials shall be as shown on the drawings or details.

B. Board filler shall be free of defects, which will impair their usefulness as expansion joint fillers.

2.4 PREFORMED BITUMINOUS EXPANSION BOARD

A. Preformed bituminous boards shall meet the specifications for ASTM D1751.

B. Or approved equal.

2.5 PAVEMENT JOINT SEALING MATERIAL

A. Cold applied joint sealants, two part urethane (self leveling) sealant equal to “Sonolastic Paving
 Joint Sealant” by Sonneborn, “Urexpan NR-200” by Pecora, or “THC-900” by Tremco, or equal.

B. Or approved equal.
2.6 DEFORMED CONTRACTION JOINT METAL STRIPS
 A. Deformed contraction joint metal strips shall be 28 ga. steel, galvanized 1.25 oz. per square foot or heavier and meet the specifications of ASTM A525.

2.7 CURING COMPOUND
 A. Curing compound shall conform to the specifications if ASTM C309, Type 2, white pigmented.

2.8 LOAD TRANSMISSION DEVICES FOR EXPANSION AND CONTRACTION JOINTS
 A. Load Transmission devices shall be as detailed on plans and conform to the properties specified in ASTM A615, Grade 60 steel.

2.9 STEEL DOWEL BARS
 A. Steel dowel bars and steel reinforcement shall be deformed or smooth bars conform on properties to ASTM A615 Grade 60. Unless otherwise shown on the plans, all reinforcing steel shall be deformed bars, all dowel bars at joints shall be smooth bars, and all curb dowels shall be deformed bars.

PART 3 - CONSTRUCTION

3.1 PAVEMENT
 A. Placing and removing forms.
 1. Forms shall be of wood or metal, properly treated to insure concrete does not adhere to the forms, straight, clean, free from warp or defect, and of sufficient depth. The forms shall be so placed that when each form section will be firmly in contact for its whole length and base width and exactly at the established grade. Any subgrade under the forms below established grade shall be corrected using suitable material, placed, sprinkled, and rolled. Forms shall be securely staked and tightly joined and keyed to prevent displacement. Sufficient stability of forms to support equipment operated thereon and to withstand its vibration without springing shall be required. Forms shall remain in place not less than 24 hours after concrete is placed.

 B. If the slip form method of paving is used, the equipment shall meet the following requirements:
 1. Side Forms. Side forms shall be of metal except as otherwise provided herein and shall be of approved cross section. The length of form sections shall not be less than 10 feet, and each section shall provide for staking in position with not less than three (3) pins. Forms shall be of ample strength and shall be provided with adequate devices to secure them in place so the forms will withstand, without visible springing or settlement, the impact and vibration of the spreading and finishing machinery. In no case shall the base of the form be less than eight (8) inches wide for a form depth of eight (8) inches or more in height. The forms shall be free from warps, bends or kinks, and shall be sufficiently true to provide a reasonably straight edge on the concrete. The top of each form section, when tested with
a straight edge, shall conform to the requirements specified for the surface of the completed pavement. A sufficient number of forms shall be provided for satisfactory prosecution of the work.

2. Flexible or curved forms of wood or metal of proper radius shall be used for curves of 100 foot radius or less.

3. The preferred depth of the form shall be equal to the required edge thickness of the pavement. Forms with depth greater or less than the required edge thickness of the pavement will be permitted provided the difference between the form depth and the edge thickness is not greater than two (2) inches, and further provided that:
 a. Forms of a depth greater than the pavement edge may be used if the supporting material is planed to construct a form trench.
 b. Forms of a depth less than the pavement edge shall be brought to the required edge thickness by securely attaching metal strips or wood shims of approved section to the full width and length of the base of the form.

4. Curb Forms. Outside curb forms shall be of wood or metal of a section satisfactory to the Engineer, straight, free of warp, and shall be of a depth at least equal to the depth of the curb. They shall be securely mounted on the paving forms and maintained in true position during the placing of the concrete. Inside curb forms, if required, shall be of approved material and of such design as to provide the curb required and shall be rigidly attached to the outside curbs forms.

C. Joints in Concrete Pavement.
 1. Joints shall be constructed in the pavement slab at locations and according to details as shown on the Drawings. Sealants shall be installed per manufactures recommendations. Stakes, braces, brackets or other devices shall be used as necessary to keep the entire joint assembly in true vertical and horizontal position.
 2. All construction joints shall be saw cut as soon as the concrete will support the combined weights of the cutting equipment and the operator but no more than four (4) hours after the concrete is poured.
 3. When prefabricated plastic strips are used to form joints, they shall be placed after the concrete surface has been leveled and before the finishing is completed. The strips shall be of a type specifically manufactured for the purpose of forming joints in concrete pavement and to the dimensions as required to form the specified joints. The strips shall be removed after the concrete has set per the manufacturer’s recommendations. Any blemishes caused by the removal of the strips shall be repaired immediately using approved methods.

D. Tie Bars and Load Transmission Devices.
 1. Shall be accurately placed as shown on Drawings and held securely (parallel to pavement surface and perpendicular to joint) during placing and finishing of pavement.

E. Expansion Joints.
 1. Shall be constructed with board filler and sealed at top. Board filler must be perpendicular to plane of concrete slab. Alignment of joint shall not vary more than 1/4 inch in 10 feet.

F. Concrete Placing and Finishing.
 1. Concrete not placed as herein prescribed within 90 minutes after mixing shall be rejected.
 2. Concrete shall not be placed when temperature is below 40°F and falling, but may be placed when the temperature is above 35°F and rising, the temperature being taken in the shade and away from artificial heat.
3. Concrete shall be consolidated by a mechanical vibrator to remove all voids. Special care shall be exercised in placing and spading concrete against forms and at all joints to prevent the forming of honeycombs and voids and to prevent displacement of steel reinforcements and load transmission devices.

4. The concrete shall be struck off with an approved strike-off screed to such elevation that when consolidated and finished, the surface of pavement shall conform to the required section and grade. In no case shall the maximum ordinate from a 10-foot straight edge to the pavement be greater than 1/8 inch.

5. The strike template shall be moved forward with a combined transverse and longitudinal motion in the direction the work is progressing, maintaining the template in contact with the forms, and maintaining a slight excess of material on front of the cutting edge.

6. After completion of a strike-off, consolidation and transverse screeding, a hand-operated longitudinal float shall be operated to test and level the surface to the required grade.

7. Workmen shall operate the float from approved bridges riding in the forms and spanning the pavement. The longitudinal float shall be held in contact with the surface and parallel to the centerline, and operated with short longitudinal strokes while being passed from one side of the pavement to the other. If contact with the pavement is not made at all points, additional concrete shall be placed if required, and screeded, and the float shall be used to produce a satisfactory surface. After a section has been smoothed so that the float maintains contact with the surface at all points being passed from one side to the other, the bridges may be moved forward half the length of the float, and the operations repeated.

8. After completion of the straightedge testing, a pass with a burlap drag shall be made as soon as construction operations permit and before the water sheen has disappeared from the surface. As many passes of the drag as required to produce the desired surface texture shall follow this.

9. After completion of dragging and about the time the concrete becomes hard, the edge of the slab and joints shall be left smooth and true to line.

G. Curing.
1. Concrete pavement shall be cured by protecting it against excessive loss of moisture for a period of not less than 72 hours from the beginning of curing operation. Immediately after finishing operations have been completed, the entire surface of the newly laid concrete shall be covered and cured. Special care should be exercised to keep spraying curing compound out of pavement joints.

3.2 APPLICATION OF JOINT SEALING COMPOUND

A. Joints shall be thoroughly cleaned of loose scale, dirt, dust and curing compound. When necessary, existing joint material shall be removed to the depth as shown on the plans.

B. Joints shall be filled to the full depth of the joint opening. Pouring shall be done in a neat and workman like manner to give satisfactory results. The sealer shall be installed per manufacturer’s recommendation. The joint sealant shall be below the top of the pavement surface.

3.3 FIELD QUALITY CONTROL TESTING

A. Concrete Test Specimens
1. A laboratory testing agency for the tests will be selected and paid for by the Owner. A laboratory technician will prepare the necessary concrete test cylinders.
2. Test cylinders for compressive strength tests will be taken and cured in accordance with ASTM C31 and tested in accordance with ASTM C39. At least 3 cylinders shall be made for each day for each 100 cy of concrete, or fraction thereof, placed.

3. Concrete pavement that does not meet the specified requirements based on the laboratory compressive strength tests shall be removed, replaced, and re-tested at no additional cost to the Owner.

B. Testing of Concrete Surface

1. After finishing is complete and while the concrete is still workable, the surface shall be tested for trueness with an approved 10-foot steel straightedge. The straightedge shall be operated from one side of the pavement placed parallel to the pavement center line and passed across the slab to reveal any high spots or depressions. The straightedge shall be advanced along the pavement in successive stages of not more than ½ its length. A tolerance of 1/8” in 10 feet shall be met. Any correction of the surface required shall be accomplished by adding concrete if required and by operating the longitudinal float over the area. The surface test with straightedge shall then be repeated.

3.4 PENING PAVEMENT TO TRAFFIC

A. The pavement shall be closed to all traffic, including vehicles of the Contractor, until the concrete is at least 7 days old or has attained a minimum average of 2,000 psi compressive strength. Repair any damage to the pavement prior to acceptance by Owner at no additional cost to the Owner. This does not relieve the Contractor from the normal liabilities and maintenance responsibilities, implied or otherwise, for the pavement or other items.

END OF SECTION
SECTION 32 1723 - PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 DESCRIPTION
A. Furnish labor, materials and equipment required for providing pavement markings as shown on the Drawings and details.

1.2 RELATED SECTIONS
A. SECTION 32 1216 – ASPHALT PAVING
B. SECTION 32 1313 – CONCRETE PAVING

1.3 SUBMITTALS
B. Submit product data demonstrating compliance with the specified requirements.
C. Submit manufacturer’s recommended instructions for application of pavement marking paint.

1.4 ENVIRONMENTAL CONDITIONS
A. Do not apply marking paint when weather is windy, foggy or rain, or ambient or pavement temperature is below 50 deg F or above 110 deg F, or when relative humidity is above 85%; nor, when such conditions are anticipated during 8 hours after application.

PART 2 - PRODUCTS

2.1 MARKING PAINT
B. Or approved equal.

2.2 EQUIPMENT
A. Pressurized, self-contained paint machine capable of applying a straight line 4” wide, with consistent coverage of a minimum of 100 square feet per gallon.
PART 3 - EXECUTION

3.1 INSPECTION AND PREPARATION
A. Locate marking as required by Drawings. Provide qualified technician to supervise equipment and application of markings.
B. Lay out markings using guideline, template, and forms.
C. Thoroughly clean surfaces free of soil, sand, gravel, oil and other foreign materials.
D. Allow surfaces to cure before painting, as required by manufacturer.

3.2 APPLICATION
A. Apply pavement marking paint in accordance with the manufacturer’s recommended instructions.
B. Apply marking paint straight and even, and in accordance with layout.

3.3 CLEANING
A. Clean spills and spatters in accordance with the manufacturer’s recommended instructions.
B. Remove overspray from surfaces other than those requiring marking paint.

END OF SECTION
SECTION 328400 - PLANTING IRRIGATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY EDIT

A. Section Includes:
 1. Temporary irrigation for the establishment of new turf areas.
 2. Possible delivery methods.
 a. Water hauler
 b. Hose end sprinkler utilizing the hose bibs of the new facility
 c. Hand watering utilizing the hose bibs of the new facility

1.3 DEFINITIONS

A. Temporary Irrigation: Non-permanently installed watering method for a defined timeframe.

B. Water Hauler: A self-propelled or towed apparatus (Truck and or trailer) capable of delivery and dispersal of irrigation water in a controllable fashion.

C. Water Sprinkler: An attachment for the end of a garden hose capable of uniformly dispensing irrigation water over a controlled area.

D. Established Turf:
 1. Sod Area - A healthy, well-rooted, even-colored, viable turf, free of weeds, open joints, bare areas, and surface irregularities.
 2. Native Seed Area - A healthy, uniform, close stand of grass, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
 1. The Contractor shall conduct a pre-installation conference with the Landscape Sub-Contractor, Owner’s Representative and Landscape Architect prior to commencing any and all landscape operations or product installation. The purpose of this meeting is to ensure that all parties involved have a collective understanding of the project goals, critical path issues and the constraints of the project site. Schedules, coordination with other trades and other issues deemed necessary by the Owner’s group shall be discussed.
1.5 PERFORMANCE REQUIREMENTS

A. Provide a method of delivering irrigation water to all indicated areas both newly sodded and seeded.

B. Provide adequate irrigation water to insure seed germination and plant establishment of the newly seeded turf areas.

C. Provide adequate irrigation water to insure proper establishment of newly sodded turf areas.

D. Delivery of a minimum equivalent of 1” of irrigation water over the designated turf areas per week. The applied amount and rate of water delivery at any one time of application shall not exceed the permeability rate of the soil. Multiple applications may be necessary to achieve the weekly goal. This delivery amount may need to be increased to achieve the requirements of 1.5 B&C noted above. Adjustments for actual rainfall should be considered.

E. Duration – Provide a minimum of 120 days of Temporary Irrigation Service from the date of Final Acceptance. This time requirement may be extended at the discretion of the Landscape Architect and or Owner if turf establishment has not been achieved by the end of the initial 120 days. If an extension is deemed necessary, the additional establishment time duration will be the financial responsibility of the General Contractor and its Sub-Contractors. No additional fee will be awarded.

F. Provide all operational aspects required to properly supply, deliver, monitor, and control the irrigation water. This includes equipment and labor necessary to achieve the stated objectives.

1.6 INFORMATIONAL AND ACTION SUBMITTALS

A. Provide a description of the intended temporary irrigation method to be used to establish the seed and turf areas. Include the intended source of the irrigation water, a complete list of all equipment required to properly deliver the irrigation water and an estimate of the labor needed.

B. Provide a schedule for the monitoring and delivery of the irrigation water.

C. Field quality-control reports. Provide documentation for the following activities performed at the project site.
 1. Date of irrigation
 2. Time spent on site
 3. Duration of sprinkler run time (if used)
 4. Number of gallons of water delivered via water hauler (if used)

1.7 TURF EVALUATION MEETING

A. Turf Establishment Conference: Conduct a conference at Project site.
 1. The Contractor shall conduct a Turf Establishment Evaluation Conference with the Landscape Sub-Contractor, Owner’s Representative and Landscape Architect at the end of the 120-day establishment period to evaluate the level of turf establishment. The purpose of this meeting is to determine if additional temporary irrigation will be required, and to ensure that all parties involved have a collective understanding of the turf
performance. Schedules, coordination with other trades and other issues deemed necessary by the Owner’s group shall be discussed. This conference may be scheduled prior to the stated 120-day target if in the contractor’s mind the turf has fully established.

2. The Contractor shall submit a statement requesting this meeting and coordinate schedules with all parties.

3. The final decision regarding acceptance of the established turf will be at the discretion of the Landscape Architect and the Owner and shall not be official until a written statement has been issued by the Landscape Architect.

END OF SECTION 328400
SECTION 329200 - TURF AND GRASSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Seeding.
 2. Sodding.
 B. Related Requirements:
 1. Section 334600 "Subdrainage" for below-grade drainage of landscaped areas.

1.3 DEFINITIONS
 A. Duff Layer: The surface layer of native topsoil that is composed of mostly decayed leaves,
 twigs, and detritus.
 B. Finish Grade: Elevation of finished surface of planting soil.
 C. Manufactured Topsoil: Soil produced off-site by homogeneously blending mineral soils or sand
 with stabilized organic soil amendments to produce topsoil or planting soil.
 D. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a
 pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and
 molluscicides. They also includes substances or mixtures intended for use as a plant regulator,
 defoliant, or desiccant.
 E. Pests: Living organisms that occur where they are not desired or that cause damage to plants,
 animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents
 (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.
 F. Planting Soil: Standardized topsoil; existing, native surface topsoil; existing, in-place surface
 soil; imported topsoil; or manufactured topsoil that is modified with soil amendments and
 perhaps fertilizers to produce a soil mixture best for plant growth.
 G. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or top surface
 of a fill or backfill before planting soil is placed.
 H. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic
 matter and soil organisms.
I. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil, but in disturbed areas such as urban environments, the surface soil can be subsoil.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For landscape Installer.

B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture, stating the botanical and common name, percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.
 1. Certification of each seed mixture for turfgrass sod. Include identification of source and name and telephone number of supplier.

C. Product Certificates: For fertilizers, from manufacturer.

D. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Instructions: Recommended procedures to be established by Owner for maintenance of turf during a calendar year. Submit with close out documentation or before expiration of required initial maintenance periods whichever occurs first.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape Installer whose work has resulted in successful turf establishment.
 1. Professional Membership: Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association.
 2. Experience: Three years' experience in turf installation in addition to requirements in Division 01 Section "Quality Requirements."
 3. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
 4. Personnel Certifications: Installer's field supervisor shall have certification in one of the following categories from the Professional Landcare Network:
 a. Certified Landscape Technician - Exterior, with installation specialty area(s), designated CLT-Exterior.
 b. Certified Turfgrass Professional, designated CTP.
 c. Certified Turfgrass Professional of Cool Season Lawns, designated CTP-CSL.
 5. Pesticide Applicator: State licensed, commercial.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.

B. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation" sections in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod and installation within 48 hours of harvesting and in time for planting promptly. Protect sod from breakage and drying.

C. Bulk Materials:
 1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
 2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 3. Accompany each delivery of bulk materials with appropriate certificates.

1.8 FIELD CONDITIONS

A. Initial Turf Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in Part 3. Begin maintenance immediately after each area is planted and continue until acceptable turf is established but for not less than the following periods:
 1. Seeded Turf: 60 days from date of planting completion.
 a. When initial maintenance period has not elapsed before end of planting season, or if turf is not fully established, continue maintenance during next planting season.
 2. Sodded Turf: 30 days from date of planting completion.

PART 2 - PRODUCTS

2.1 SEED

A. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA's "Journal of Seed Technology; Rules for Testing Seeds" for purity and germination tolerances.

B. Seed Species: Seed of grass species as follows, with not less than 95 percent germination, not less than 82 percent pure seed, and not more than 0.5 percent weed seed:
 a. Reference Native Seed Selection Schedule in the drawing package

2.2 TURFGRASS SOD

A. Turfgrass Sod: Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, complying with "Specifications for Turfgrass Sod Materials" in TPI's
"Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture, strongly rooted, and capable of vigorous growth and development when planted.

B. Turfgrass Species: Bermudagrass (Cynodon dactylon).

2.3 FERTILIZERS

A. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 1. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.

2.4 PESTICIDES

A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

B. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

C. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to be planted for compliance with requirements and other conditions affecting installation and performance of the Work.
 1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
 2. Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
 3. Suspend soil spreading, grading, and tilling operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
 4. Uniformly moisten excessively dry soil that is not workable and which is too dusty.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Architect and replace with new planting soil.
3.2 PREPARATION
 A. Protect structures; utilities; sidewalks; pavements; and other facilities, trees, shrubs, and plantings from damage caused by planting operations.
 1. Protect grade stakes set by others until directed to remove them.

3.3 TURF AREA PREPARATION
 A. Limit turf subgrade preparation to areas to be planted.
 B. Newly Graded Subgrades: Loosen subgrade to a minimum depth of 1 inch. Remove stones larger than 1/2 inch in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 C. Unchanged Subgrades: If turf is to be planted in areas unaltered or undisturbed by excavating, grading, or surface-soil stripping operations, prepare surface soil as follows:
 1. Remove existing grass, vegetation, and turf. Do not mix into surface soil.
 2. Loosen surface soil to a depth of at least 1 inch. Apply soil amendments and fertilizers according to planting soil mix proportions and mix thoroughly into top 1 inch of soil.
 a. Apply superphosphate fertilizer directly to surface soil before loosening.
 3. Remove stones larger than 1 inch in any dimension and sticks, roots, trash, and other extraneous matter.
 4. Legally dispose of waste material, including grass, vegetation, and turf, off Owner's property.
 D. Finish Grading: Grade turf areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish of fine grading to areas that can be planted with turf within the same calendar day.
 E. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.
 F. Before planting, obtain Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.4 SEEDING
 A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 1. Do not use wet seed or seed that is moldy or otherwise damaged.
 B. Sow seed at the rates established in the drawings.
 C. Rake seed lightly into top 1/8 inch of soil, roll lightly to insure seed contact with the soil, and water with fine spray.
D. Protect seeded areas with a 1” layer of Crimped Hay and lightly tamp to minimize surface disruption and loss due to feeding birds.

3.5 SODDING

A. Lay sod within 48 hours of harvesting. Do not lay sod if ground is frozen or muddy.

B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to subgrade or sod during installation. Tamp and roll lightly to ensure contact with subgrade, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.
 1. Lay sod across angle of slopes exceeding 1:3.
 2. Anchor sod on slopes exceeding 1:6 with wood pegs or steel staples spaced as recommended by sod manufacturer but not less than 2 anchors per sod strip to prevent slippage.

C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod. Immediately after planting, water sod with a temporary irrigation system.

3.6 NATIVE OVERSEEDING OF SOD

A. Following installation of the sod sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 1. Do not use wet seed or seed that is moldy or otherwise damaged.

B. Sow seed at the rates established in the drawings.

C. Rake seed lightly into the sod over the indicated areas and water with fine spray.

3.7 TURF MAINTENANCE

A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and reseed or resod to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.
 1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
 2. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.

B. Watering: Provide and maintain temporary irrigation as described in SECTION 328400. Provide turf-watering to convey water to keep turf uniformly moist to a depth of 4 inches.
1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or sod. Lay out temporary watering system to avoid walking over muddy or newly planted areas.

2. Water turf with fine spray at a minimum rate of 1 inch per week unless rainfall precipitation is adequate.

C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than 1/3 of grass height. Remove no more than 1/3 of grass-leaf growth in initial or subsequent sowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:
 1. Mow bermudagrass to a height of 1/2 to 1 inch.
 2. Mow Native Seed area to a height of 3 to 4 inches.

D. Turf Postfertilization: Apply fertilizer after initial mowing and when grass is dry.
 1. Use fertilizer that will provide actual nitrogen of at least 1 lb/1000 sq. ft. to turf area.

3.8 SATISFACTORY TURF

A. Turf installations shall meet the following criteria as determined by Architect:
 1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
 2. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.

B. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

3.9 PESTICIDE APPLICATION

A. Apply pesticides and other chemical products and biological control agents according to requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.

B. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.10 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of them off Owner's property.
C. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.

D. Remove nondegradable erosion-control measures after grass establishment period.

3.11 REQUIRED TURF MAINTAINCE

A. Maintain turf areas until Final Project Acceptance. Acceptable grass sod shall be well established and exhibit a vigorous growing condition for a minimum of two cuttings.

END OF SECTION 329200
SECTION 33 1000 - WATER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. Furnish labor, materials and equipment necessary for the construction of domestic water and fire services.

1.2 RELATED SECTIONS

A. SECTION 31 2333 – TRENCH EXCAVATION
B. SECTION 31 2334 – TRENCH BACKFILL
C. SECTION 31 2335 – TRENCH SAFETY SYSTEM

1.3 APPLICABLE STANDARDS

A. ASTM International (ASTM):
 1. ASTM B88 – Specification for Seamless Copper Water Tube
 3. ASTM D2241 – Specification for PolyVinyl Chloride (PVC) Pressure-Rated Pipe (SDR Series)
 5. ASTM F645 – Guide for Selection, Design, and Installation of Thermoplastic Water Pressure Piping Systems

B. American Water Works Association (AWWA):
 1. AWWA C105 – Polyethylene Encasement for Ductile-Iron Pipe Systems
 2. AWWA C110 – Ductile-Iron and Gray-Iron Fittings, 3 Inches through 48 Inches, for water and other liquids
 3. AWWA C509 – Resilient Seated Gate Valves, 3 Inches through 12 Inches NPS, for water systems
 4. AWWA C502 – Dry-Barrel Fire Hydrants
 5. AWWA C550 – Protective Interior Coatings for Valves and Hydrants
 6. AWWA C605 – Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water
 7. AWWA C651 – Disinfecting Water Mains
 8. AWWA C900 – PolyVinyl Chloride (PVC) Pressure Pipe, 4 Inches through 12 Inches for Water
 9. AWWA C909 – PolyVinyl Chloride (PVC) Pressure Pipe, 6 Inches through 16 Inches for Water.

C. Regulatory Requirements: Texas Commission on Environmental Quality (TCEQ), Title 30 Texas Administrative Code (TAC), Chapter 290, “Public Drinking Water”.
 1. Rule §290.38 Definitions

100 CONSTRUCTION DOCUMENTS WATER UTILITIES
01.22.2021 Page 1 of 8
3. Rule §290.44 Water Distribution

D. Regulatory Requirements: Texas Commission on Environmental Quality (TCEQ), Title 31 Texas Administrative Code (TAC), Chapter 317, “Design Criteria for Sewage Systems”.

E. Rule §317.13 Appendix E -- Separation Distances

F. NSF International NSF/ANSI 61 Drinking Water System Components – Health Effects

G. National Fire Protection Association (NFPA) NFPA 24 Installation of Private Fire Service Mains and Their Appurtenances; NFPA 13 Standard for the Installation of Fire Sprinklers (Chapter 10)

H. ASME International ASME B16.22 Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

1.4 SUBMITTALS

A. Procedures for Submittals: DIVISION 1

B. Product Data: Manufacturer’s product data sheets.

C. Certificates: Manufacturer’s certificates attesting compliance with applicable specifications for grades, types, classes, and other properties of pipe, fitting, valves, valve boxes, and fire hydrants.

D. Shop drawings showing any deviations to the location and arrangement of water service and fire service piping systems.

E. Piping which begins at the circulating water main and terminates a fire protection connection is considered to be the underground fire service piping.

F. Shop drawings for the fire service piping shall be submitted for review by a contractor licensed by the State Fire Marshal – Responsible Managing Employee – Underground (RME-U)

G. Shop drawings for the fire service piping shall be submitted to UT Southwestern Office of Safety and Business Continuity – Fire Safety for review and approval by the Director of Fire and Occupational Safety (University Fire Marshal) or their designee.

H. Test Reports: Provide two (2) copies of each field quality control tests including, but not limited to hydrostatic tests, bacteriological tests, infiltration/exfiltration tests, mandrel tests, video camera test, flow test, etc.

I. Testing on the fire service piping shall be inaccordance with National Fire Protection Association (NFPA) NFPA 24 Installation of Private Fire Service Mains and Their Appurtenances; NFPA 13 Standard for the Installation of Fire Sprinklers (Chapter 10) and
witnessed by the Director of Fire and Occupational Safety (University Fire Marshal) or their
designee.

J. Contractor is to accurately record installation of piping systems with appurtenances and present
the information to Owner at the completion of the project as “Project Record Drawings”.

1.5 QUALITY ASSURANCE

A. Comply with the provisions of DIVISION 1.

B. Comply with AWWA Standards for public drinking water.

C. Comply with the provisions of 30 TAC Chapter 290, Rules §290.38, §290.39, and §290.44 for
installation and testing of potable water pipes and piping systems.

D. Comply with the provisions of 30 TAC Chapter 317, Rule §317.13 for location of water mains
near sanitary sewer mains.

E. Comply with NSF 61 for potable water pipes and piping systems.

F. Comply with NFPA 24 and NFPA 13 for fire service pipes, piping systems, and related
products.

G. Provide listing and/or approval stamp, label or other marking on piping and specialties made to
specified standards.

PART 2 - PRODUCTS

2.1 POLYVINYL CHLORIDE (PVC) PIPE

A. PVC Water Pipe, 4” through 12”: AWWA C900, Class 150, DR-18.

B. PVC Fireline Pipe, 4” through 12”: AWWA C900, Class 200, DR-14.

C. PVC Water Pipe, 2” through 4”: ASTM 2241, SDR-26, PVC 1120, PVC 1220 or PVC 2120.
Joints shall be flexible elastomeric seals for plastic pressure pipe in accordance with ASTM
D3139.

D. PVC Water Pipe shall bear NSF seal of approval and shall be pressure class 150 PSI.

E. Pipe shall be furnished with bell and spigot joint with rubber gasket joint meeting the standards
specified by AWWA C111-72 (ANSI A21.11), or its latest revision. Spigot ends shall be
beveled and reference marked to facilitate joining and insure proper seating depth.

2.2 FITTINGS

A. Buried Fittings: Ductile Iron compact type with push-on joints complying with ANSI
A21.53/AWWA C153, or standard fittings complying with AWWA C110. Use mechanical
joints with retainer glands where required for complete system. For potable water systems, ductile iron fittings shall bear the NSF seal and be marked for potable water use.

B. Rating: Fittings working pressure rated to 250 psi.

C. Wrapping: Buried ductile iron fittings wrapped with 8-mil polyethylene encasement, AWWA C105.

2.3 COPPER TUBING

A. Copper Tubing (1/2” through 2”) shall comply with ASTM B88, Type K, drawn, temper. Fittings shall be wrought copper solder-joint pressure-type complying with ASME B16.22.

2.4 VALVES AND HYDRANTS

A. Gate Valves:
4. All shall be provided with an “open left”, counter clockwise, wrench nut.

B. Valve Boxes:

C. Fire Hydrants:

PART 3 - EXECUTION

3.1 GENERAL

A. Some water mains and valves are existing. Field verify location and depth of existing water utilities. Valve boxes shall be adjusted to the new finish grades.

B. Provide for a surveyor to stake the accurate locations of proposed piping system including pipe alignment, valves, and all other appurtenances.

C. Do not lay pipe in water, or when trench or weather are unsuitable for work. Keep water out of trench until jointing is complete and bedding is placed to top of pipe. When work is not in
progress, close ends of pipe and fittings securely so that no trench water, earth or other substance will enter pipes or fittings.

D. Pay for and obtain all permits for work in public right-of-way and connecting to public facilities.

3.2 WATER SYSTEM INSTALLATION

A. General Locations and Arrangements: The Drawings indicate general locations and arrangements of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction losses, expansion, pump sizes, and other design considerations. Minor variations in the piping system layout are permissible and, at times, unavoidable. However, significant deviations to the piping system layout as shown on the Drawings, shall not be acceptable unless such deviations are approved by the Engineer.

B. Install PVC water pipe in accordance with AWWA C605.

C. Install pipe true to alignments and grades shown on the Drawings, free of sags and unspecified bends.

D. Do not exceed pipe manufacturer’s recommended deflection limits from straight line or grade when laying pipe on horizontal curves, vertical curves, or offsets. If alignment requires deflections in excess of these limitations, install manufactured bends or cut pipe into shorter lengths to provide angular deflections within the manufacturer’s limits.

E. Pipe joints.
 1. Joints for PVC water pipe shall be gasketed using flexible elastomeric seals.
 2. Make push-on joints in accordance with manufacturer’s recommendations.
 3. Install piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping and thrust blocks. Use anchors, tie-rods, clamps, or other supports where necessary.
 4. When joining dissimilar piping materials, use couplings or adapters compatible with both piping materials, outside diameter, system working pressure, and manufactured specifically for the intended use.
 5. Install mechanical joints in accordance with manufacturer’s recommendations.

F. Install fittings for changes in direction and branch connections.

G. Pipe shall be installed with pipe letters facing up so that it can be read from grade.

H. Wrap all ductile iron fittings and valves in polyethylene sheet in accordance with AWWA C105.

I. Anchorage or Fittings - Thrust Block: Anchor tees, bends and plugged, valved or capped ends of lines of water mains. Place blocks so that the joints will be accessible for inspection and repair.

J. Install components with pressure rating equal to or greater than system operating pressure.
K. Bury piping with a depth of cover, as measured from finish grade to top of pipe, not less than 48 inches.

L. Install blue plastic warning tape that reads "Caution Water Main" in black letters every 4 feet and shall be placed approximately 12” above the top of pipe prior to the placement of subsequent backfill layers.

M. Install 4” wide aluminum tape at 12” below grade with all water distribution piping.

3.3 VALVE INSTALLATION

A. General Application: Use mechanical-joint-end valves for 3-inch and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use bronze corporation stops and valves, with ends compatible with piping, for 2½-inch and smaller installation.

B. Install underground valves with stem pointing up and with cast-iron box. Provide valve stem extensions so that operating nut is set within 18 inches of finish grade.

C. Bronze corporation stops and curb stops: Comply with manufacturer’s written instructions. Install underground curb stops with head pointed up and with cast-iron curb box.

3.4 FIRE HYDRANTS

A. Install fire hydrants and associated valves as shown on the Drawings and in accordance with NFPA 24.

B. Install each fire hydrant with a separate gate valve on fire lead from main, anchor with restrained joints or thrust blocks, and support in upright position.

C. Prior to installing valves or fire hydrants, remove foreign matter from within the valves. Inspect the valves in open and close position to verify that parts are in satisfactory working condition.

D. Place a concrete thrust block on fire hydrant shoe opposite pipe connection, set against vertical face of trench, to prevent hydrant from blowing off line. Do not block drain holes. If character of soil is such that fire hydrant cannot be securely wedged in this manner, provide restrained pipe joints.

E. Place a minimum of 5 cubic feet of gravel or crushed stone around base of fire hydrant to ensure drainage. Do not block drain holes. Compact backfill thoroughly around hydrant to grade line.

3.5 WATER SERVICES

A. Water Service Piping Materials.

1. For services 2½” and larger, use PVC water pipe for service and provide a wye fitting in the new main.

2. For services 2” and smaller, use copper tubing for service and tap new main with standard brass or stainless steel service saddle and corporation stop.
B. Install PVC water pipe in accordance with ASTM F645.

C. Install copper tubing in accordance with CDA’s “The Copper Tubing Handbook”.

D. Connect to water main and extend water service to building. Install water services after water mains have been pressure tested and disinfected. Make connection to building water piping systems when those systems are installed.

3.6 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests:
 1. Test at not less than 1.50 times working pressure for 2 hours.
 2. Increase pressure in 50 psig increments and inspect each joint between increments. Hold at test pressure for one hour, then decrease to 0 psig. Slowly increase again to test pressure and hold for one more hour, then decrease to 0 psig. Repeat this testing cycle until the specified test pressure is tested, holding for 2 hours.
 3. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test procedure until leakage is within the specified limits.

C. Fire Service Piping Test:
 1. A hydrostatic test shall be conducted in accordance with NFPA 24 and NFPA 13.
 2. Test shall be for 200 psi or 50 psi in excess of system pressure (whichever is greater) and shall maintain a +/- 5 psi for 2 hours.
 3. The water lines shall be flushed clean prior final sealing; the flush shall last as long as necessary to ensure

D. Prepare reports for testing activities, including locations of pipe tested, environmental conditions, test description, and test results.

E. Fire service underground testing must be completed prior to connection with the fire protection system.

3.7 DISINFECTION

A. Clean and disinfect water distribution piping system prior to making building connections and turning system over to Owner.

B. Purge new water distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.

C. Use purging and disinfecting procedures prescribed in AWWA C651.

D. Prepare reports for purging and disinfecting activities, including locations of pipe purged and disinfected, and description of procedures.
3.8 DISPOSAL OF WATER

A. Contractor shall coordinate the disposal of all domestic water, resulting from new construction, with the Owner prior to beginning work.

END OF SECTION
SECTION 33 3000 - SANITARY SEWERAGE UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. Complete sanitary sewers and appurtenances using construction techniques and materials as required by the construction plans and these Specifications.

1.2 RELATED SECTIONS

A. SECTION 31 2333 – TRENCH EXCAVATION
B. SECTION 31 2334 – TRENCH BACKFILL
C. SECTION 31 2335 – TRENCH SAFETY SYSTEM

1.3 REFERENCES

A. American Society for Testing and Materials (ASTM)
1. ASTM C144 – Aggregate for Masonry Mortar.
2. ASTM C270 – Mortar for Unit Masonry.
3. ASTM C478 – Precast Reinforced Concrete Manhole Sections.
7. ASTM D3034 – Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings.

B. American Water Works Association (AWWA)
1. AWWA C110 – Ductile Iron and Gray-Iron Fittings, 3 Inches through 48 Inches, for Water and Other Liquids.
2. AWWA C150 – PVC piping with 150 psi pressure rating.

C. Regulatory Requirements: Texas Commission on Environmental Quality (TCEQ), Title 31 Texas Administrative Code (TAC), Chapter 317, “Design Criteria for Sewage Systems”.
2. Rule §317.2 Sewage Collection System
3. Rule §317.13 Appendix E – Separation Distances

D. Regulatory Requirements: Texas Commission on Environmental Quality (TCEQ), Title 30 Texas Administrative Code (TAC), Chapter 290, “Public Drinking Water”.
1. Rule §290.44(e) Location of Waterlines

1.4 SUBMITTALS

B. **Product Data:** Manufacturer’s product data sheets for iron castings and pipe material

C. **Quality Control Submittals:**
 1. **Certificates:** Manufacturer’s certificates attesting compliance with applicable specifications for grades, types, classes, strengths and thickness of pipe and fittings.
 2. **Certificates:** Manufacturer’s certificates attesting compliance with applicable specifications for precast manhole sections, joints, and pipe connectors.
 3. **Test Reports:** Results of field quality control tests.

D. **Contract Closeout Submittal:**
 1. **Project Record Documents:** Submit documents in accordance with DIVISION I. Accurately record actual location of each service connection to building and each manhole.

1.5 QUALITY ASSURANCE

A. Comply with the provisions of DIVISION 1.

C. Comply with the provisions of 30 TAC Chapter 290, Rule §290.44(e).

PART 2 - PRODUCTS

2.1 SANITARY SEWER PIPE

A. **Polyvinyl Chloride Pipe (PVC):**
 1. For Gravity Sewer Main where required due to clearance from waterline: ASTM D2241 SDR-26 PVC pressure-rated pipe.
 2. For Gravity Sewer Main elsewhere: ASTM D3034, SDR-35 PVC pipe and fittings, as applicable.

2.2 CLEANOUTS

A. Install in accordance with TCEQ and Drawings

2.3 SERVICE CONNECTIONS

A. Install in accordance with TCEQ and Drawings.

2.4 MANHOLES

A. **Precast Concrete Manholes:** Precast concrete manholes shall comply with ASTM C478. Joints for precast concrete manholes shall be rubber gaskets comply with ASTM C443.

C. Iron Castings: Gray Cast Iron, ASTM A48, Class 20, free of imperfections, with holes in cover lean and free from plugs.
 1. Machine bearing surfaces of manhole frames and covers to provide even bearing in any position in which the manhole cover is seated on the frame.
 2. Cast the word “SEWER” on each manhole cover.
 3. Provide bolt down pressure type covers with seal consisting of either a 1/16 in. copper gasket or 1/4 in. diameter neoprene O-ring gasket between cover and frame.

PART 3 - EXECUTION

3.1 PREPARATION

 A. The Contractor is to provide a surveyor to stake locations of manholes, cleanouts and sanitary sewer main at a minimum 50-foot intervals.

3.2 EXCAVATION

 A. Excavate for sanitary sewer systems as specified in SECTION 312333.

3.3 PIPE INSTALLATION

 A. Comply with ASTM D2321.

 B. General:
 1. Lay type, class, and size of pipe as scheduled on Drawings. Install piping in accordance with manufacturer’s installation instructions.
 2. Protect pipe during handling against impact shocks and freefalls. Do not install damaged or defective pipe.

 C. Lay piping at lowest point of trench with spigot end pointing in direction of flow.

 D. Lay each pipe firmly and true to line and grade, forming a closed concentric joint with the adjoining pipe and preventing sudden offsets of the flow line.

 E. Make adjustments to line and grade scraping away or filling under the body of the pipe. Wedging to blocking under the pipe ends is prohibited.

 F. When work is not in progress, close open ends of pipe and fittings to prevent water, earth or other substances from entering the pipe and fittings.
3.4 PIPE BEDDING - INSTALLATION
 A. Provide bedding for all sizes and depths of sanitary sewer pipe as detailed on Drawings, and specified in SECTION 31 2334.

3.5 SERVICE CONNECTIONS - INSTALLATION
 A. Coordinate the exact location of all sanitary sewer connections with Drawings prepared by the Mechanical Engineer.
 B. Locate far-side service connections and near-side service stubs as shown on Drawings.
 1. Show actual locations of installed service connections on Project Record Drawings.

3.6 CLEANOUTS - INSTALLATION
 A. Locate cleanouts as shown on Drawings.
 1. Show actual location of installed cleanouts on Project Record Drawings.

3.7 MANHOLES - INSTALLATION
 A. General: Manhole base shall be cast-on-site.
 B. Installation Procedures
 1. Make manhole cut-outs: Prepare excavation in a normal manner. Be sure excavation has been properly shored for safety. Mark manhole for pipe cut-outs. 90 degree marks are stenciled on the bottom of each manhole at the factory in order to locate the cut-out positions.
 2. Pour concrete base: Pour concrete base in place in the trench. Make sure the concrete extends at least one foot from the outside wall of the manhole and a minimum of six inches above incoming lines. On the inside, the concrete will form a fully enclosed bench and invert area. Make sure the concrete is at least four inches above the incoming lines inside the manhole.
 3. Set manhole: To lift the manhole, insert a 4" x 4" timber into the opening at the top of the manhole. Attach a rope or a chain to the timber and lift with backhoe or other lifting device. Set manhole into the wet concrete and insert to the required depth.
 4. Backfill: Backfill with sand or stabilized soil of moderate compaction free from large stones or other debris. The backfill should be added in one foot lifts beginning at the manhole and working outward to avoid uneven lateral pressure.
 5. Bring to grade: Use pre-cast concrete grade rings mortared in place to bring the manhole to grade level.
 C. Encase manhole drop structure in mortar to form one continuous structure with the manhole.

3.8 BACKFILLING
 A. Back fill sanitary sewerage excavations as specified in SECTION 31 2334.
B. Green plastic warning tape that reads "Caution-Sanitary Sewer" in black letters every 4 feet shall be placed approximately 12” above the top of pipe prior to the placement of subsequent backfill layers.

C. Install detector tape with all sanitary sewer piping.

3.9 FIELD QUALITY CONTROL

A. General: During construction, perform leakage testing and displacement testing as work progresses. No more than 500 linear feet of installed sewer shall be allowed to remain untested. After backfilling and removing debris from each section of sewer line, conduct a line acceptance test under observation of the engineer. Follow all TCEQ requirements for testing.

B. Leakage Testing: Test the sanitary sewer lines in strict accordance with the following leakage test using low-pressure air. If the test results indicate an unacceptable installation, locate the source of leakage, correct the defect, and retest until the installation is proven satisfactory. Follow all TCEQ requirements for testing.

1. Minimum Requirements for Equipment:
 a. Control panel.
 b. Low-pressure air supply connected to control panel.
 c. Pneumatic plugs of acceptable size for diameter of pipe to be tested; capable of withstanding internal test pressure without leaking or requiring external bracing.
 d. Air hose from control panel to:
 e. Air supply
 f. Pneumatic plugs
 g. Sealed Line for pressurizing
 h. Sealed line for monitoring internal pressure

2. Test Pneumatic Plugs: Test plugs before using in actual test installation.
 a. Place one length of pipe on ground and seal at both ends of pneumatic plugs to be checked.
 1) Pressurize plugs to 25 psig; then pressurize sealed pipe to 5 psig.

3. Compensating for Groundwater Pressure:
 a. Where groundwater exists, install a capped nipple at the same time the sewer line is placed. Use a ½-inch capped pipe nipple approximately 10 inches long. Make the installation through the manhole wall on top of the sewer line where the line enters the manhole.
 b. Immediately before performing the line acceptance test, remove the pipe cap, clear the pipe nipple with air pressure, and connect a clear plastic tube to pipe nipple. Support the tube vertically and allow water to rise in the tube. After the water stops rising, measure the height in feet of water over the invert of the pipe. Divide this height by 2.3 feet/psi to determine the groundwater pressure to be used in line testing.

4. Line Testing: After pneumatic plugs have been checked, place plugs in line at manhole and inflate plugs to 25 psig. Introduce low-pressure air into the sealed line until the internal air pressure reaches 4 psig greater than the groundwater pressure. Allow at least 2 minutes for air pressure to stabilize. If at least 3.5 psig over groundwater pressure is maintained, disconnect the air hose from the control panel to the air supply and measure the time of the pressure drop between 3.5 and 2.5 psig above groundwater pressure.
a. The installation is acceptable if the air low rate does not exceed 0.003 cfm per square foot of internal pipe surface with an average test pressure of 3.0 psig greater than groundwater pressure.

b. The line between manholes is within acceptable limits if the time for the 1 psig pressure drop is not less than the time listed below for pipe sizes indicated.

<table>
<thead>
<tr>
<th>Pipe Diameter (in)</th>
<th>Minutes Pressure is Maintained</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>8</td>
<td>4.0</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>12</td>
<td>5.5</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>18</td>
<td>8.5</td>
</tr>
<tr>
<td>21</td>
<td>10.5</td>
</tr>
<tr>
<td>24</td>
<td>11.5</td>
</tr>
<tr>
<td>30</td>
<td>14.5</td>
</tr>
<tr>
<td>36</td>
<td>17.0</td>
</tr>
</tbody>
</table>

C. Test for Displacement of Sewers: Test plastic pipe sizes 6 inches through 30 inches for deflection by pulling a mandrel with an outside diameter equal to 95 percent of the base inside diameter of the pipe through the pipe after backfilling is complete. Base inside diameters for PVC pipe shall be as per pipe manufacturer’s published data.

1. Mandrel shall be cylindrical in shape and constructed with at least seven evenly spaced arms or prongs. Mandrels with less arms will be rejected as not sufficiently accurate. Contact length of the mandrel’s arms shall equal or exceed the nominal diameter of the sewer to be inspected.

2. Hand pull mandrel through all plastic sewer lines. Uncover sections of sewer not passing the mandrel and replace. Retest or replace sewer lines.

3. Inspection no earlier than 30 days after reaching final trench backfill grade, provided that the soil has thoroughly settled throughout the entire trench.

END OF SECTION
GEOTECHNICAL EXPLORATION

EISENHOWER STATE PARK RESTROOM REPLACEMENT
Off Armadillo Hill Drive
Denison, Texas
ALPHA Report No. G201372
August 14, 2020

Prepared for:
GSBS ARCHITECTS
7291 Glenview Drive
Fort Worth, Texas 76180
Attention: Mr. Nick Palluth

Prepared By:

ALPHA TESTING
WHERE IT ALL BEGINS
August 14, 2020

GSBS Architects
7291 Glenview Drive
Fort Worth, Texas 76180

Attention: Mr. Nick Palluth

Re: Geotechnical Exploration
Eisenhower State Park Restroom Replacement
Off Armadillo Hill Drive
Denison, Texas
ALPHA Report No. G201372

Attached is the report of the geotechnical exploration performed for the referenced project. This study was authorized by Mr. Kevin B. Miller, AIA and performed in accordance with AIA Document C402 – 2018 between GSBS Architects and ALPHA TESTING, INC., dated July 14, 2020, and performed in accordance with ALPHA Proposal No. 76628 dated March 27, 2020.

This report contains results of field explorations and laboratory testing and an engineering interpretation of these with respect to available project characteristics. The results and analyses were used to develop recommendations to aid design and construction of foundations and pavement.

ALPHA TESTING, INC. appreciates the opportunity to be of service on this project. If we can be of further assistance, such as providing materials testing services during construction, please contact our office.

Sincerely,

ALPHA TESTING, INC.

Scott W. Taylor, P.E.
Senior Geotechnical Engineer

Harsha R. Addula, P.E.
Geotechnical Department Manager
TABLE OF CONTENTS

ALPHA REPORT NO. G201372

1.0 PURPOSE AND SCOPE ...1

2.0 PROJECT CHARACTERISTICS ..1

3.0 FIELD EXPLORATION ...1

4.0 LABORATORY TESTS ..2

5.0 GENERAL SUBSURFACE CONDITIONS ...2

6.0 DESIGN RECOMMENDATIONS ..2

6.1 Drilled Pier Foundation System ..3

6.2 Floor Slab for Pier-Supported Structure ..4

6.2.1 Subgrade Improvement Utilizing Moisture-Conditioned Soil ..5

6.3 Slab-on-Grade Foundation System ..6

6.3.1 Design of Post-Tensioned, Slab-on-Grade Foundation Systems6

6.3.2 Design of BRAB/WRI Slab-on-Grade Foundation Systems ...7

6.4 Seismic Considerations ..7

6.5 Flatwork ..8

6.6 Area Pavement ..8

6.6.1 Pavement Subgrade Preparation ..8

6.6.2 Portland Cement Concrete (PCC) Pavement ...9

6.6.3 Asphaltic Concrete (AC) Pavement ..10

6.7 Drainage and Other Considerations ..10

7.0 GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS11

7.1 Site Preparation and Grading ...11

7.2 Foundation Excavations ..13

7.3 Fill Compaction ..14

7.4 Utilities ...15

7.5 Groundwater ...16

8.0 LIMITATIONS ...16

APPENDIX

A-1 Methods of Field Exploration

Boring Location Plan – Figure 1

B-1 Methods of Laboratory Testing

Swell Test Data – Figure 2

Logs of Borings

Key to Soil Symbols and Classifications
1.0 PURPOSE AND SCOPE

The purpose of this geotechnical exploration is for ALPHA TESTING, INC. (ALPHA) to evaluate for the Client some of the physical and engineering properties of subsurface materials at selected locations on the subject site with respect to formulation of appropriate geotechnical design parameters for the proposed construction. The field exploration was accomplished by securing subsurface samples from widely spaced test borings performed across the expanse of the site. Engineering analyses were performed from results of the field exploration and results of laboratory tests performed on representative samples.

Also included are general comments pertaining to reasonably anticipated construction problems and recommendations concerning earthwork and quality control testing during construction. This information can be used to evaluate subsurface conditions and to aid in ascertaining construction meets project specifications.

Recommendations provided in this report were developed from information obtained in test borings depicting subsurface conditions only at the specific boring locations and at the particular time designated on the logs. Subsurface conditions at other locations may differ from those observed at the boring locations, and subsurface conditions at boring locations may vary at different times of the year. The scope of work may not fully define the variability of subsurface materials and conditions that are present on the site.

The nature and extent of variations between borings may not become evident until construction. If significant variations then appear evident, our office should be contacted to re-evaluate our recommendations after performing on-site observations and possibly other tests.

2.0 PROJECT CHARACTERISTICS

The project site is located west off of Armadillo Hill Drive within the Eisenhower State Park in Denison, Texas. A site plan illustrating the general outline of the property is provided as Figure 1, the Boring Location Plan, in the Appendix. At the time of the field exploration, an existing restroom building occupied the site and the surrounding area was covered in paving and grass. Based on cursory visual observations, the site appeared to slope down slightly to the west.

Detailed plans for the restroom and grading information was not provided at the time of this study. The proposed building is anticipated to be supported using either a drilled pier foundation system or a slab-on-grade foundation designed for movements of 1 inch or less. For the purposes of this investigation, we have assumed that the final building pad elevation will be within 2 ft of existing grade as encountered during drilling. It is anticipated area pavement will consist of portland cement concrete and/or asphaltic concrete.

3.0 FIELD EXPLORATION

Subsurface conditions on the site were explored by drilling two (2) test borings to a depth of 25 ft each in general accordance with ASTM Standard D 420 using standard rotary drilling equipment. The approximate location of each test boring is shown on the Boring Location Plan, Figure 1, enclosed in the Appendix. Details of drilling and sampling operations are briefly summarized in Methods of Field Exploration, Section A-1 of the Appendix.
Subsurface types encountered during the field exploration are presented on Log of Boring sheets included in the Appendix. The boring logs contain our Field Technician's and Engineer's interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are approximate and the actual transition between strata may be gradual.

4.0 LABORATORY TESTS

Selected samples of the subsurface materials were tested in the laboratory to evaluate their engineering properties as a basis in providing recommendations for foundation design and earthwork construction. A brief description of testing procedures used in the laboratory can be found in Methods of Laboratory Testing, Section B-1 of the Appendix. Individual test results are presented on Log of Boring sheets or on summary data sheets also enclosed in the Appendix.

5.0 GENERAL SUBSURFACE CONDITIONS

Based on available geologic maps, the project site appears to be mapped in the Kiamichi formation near both the undivided Fort Worth Limestone/Duck Creek formation and undivided Goodland Limestone/Walnut Clay formation.

Subsurface materials in the borings consist generally of clay (CH/CL) soils to depths of about 8 to 15 ft below the existing ground surface underlain by tan or gray limestone. Borings 1 and 2 were both terminated due to auger refusal in hard limestone at depths of 18 and 12 ft, respectively. The letters in parenthesis represent the soils’ classification according to the Unified Soil Classification System (ASTM D 2488). More detailed stratigraphic information is presented on the Log of Boring Sheets attached to this report.

Groundwater was not encountered in the borings. However, it is common to detect seasonal groundwater from natural fractures within the clayey matrix or near the soil/rock (limestone) interface, or from fractures in the rock, particularly during or after periods of precipitation. Most of the subsurface materials are relatively impermeable and are anticipated to have a relatively slow response to water movement. Therefore, several days of observation will be required to evaluate actual groundwater levels within the depths explored. Also, the groundwater level at the site is anticipated to fluctuate seasonally depending on the amount of rainfall, prevailing weather conditions and subsurface drainage characteristics. If more detailed groundwater information is required, monitoring wells or piezometers can be installed.

Further details concerning subsurface materials and conditions encountered can be obtained from the Log of Boring sheets provided in the Appendix.

6.0 DESIGN RECOMMENDATIONS

The following design recommendations were developed on the basis of the previously described Project Characteristics (Section 2.0) and General Subsurface Conditions (Section 5.0). If project criteria should change, including structure location on the site, our office should conduct a review to determine if modifications to the recommendations are required. Further, it is recommended our office be provided with a copy of the final plans and specifications for review prior to construction.
The design information given in this report was developed assuming final grades are within 2 ft of existing grade. Further cutting and filling on the site beyond that assumed might require modifications to the recommendations provided in this report. Therefore, it is recommended our office be contacted before performing other cutting and filling on site to verify the appropriate design parameters are utilized for final foundation design. A final grading plan should be provided for review.

6.1 Drilled Pier Foundation System

Our findings indicate the structural frame and walls for the proposed restroom building could be supported using a system of drilled, straight-shaft piers bearing in the tan or gray limestone. These piers should bear at least 2 ft into the underlying tan or gray limestone. Deeper penetrations will be required to develop skin friction and/or uplift resistance. The tan limestone was encountered in Boring 2 at a depth of about 8 ft and extended to a depth of about 12 ft below existing grade. Gray limestone was encountered in Boring 1 at a depth of about 15 ft below existing grade and extended to a depth of about 18 ft below existing grade. Borings 1 and 2 were both terminated due to auger refusal in hard limestone at depths of 18 and 12 ft, respectively. Drilled shafts should also have a minimum overall length of at least 8 ft.

Drilled piers bearing in tan or gray limestone can be dimensioned using a net allowable end-bearing pressure of 30 ksf and skin friction (in compression) of 3.8 ksf. The skin friction component should be applied only to the portion of the shaft located in the tan or gray limestone (neglecting the upper 2 ft of tan or gray limestone) and applied only to the portion in tan or gray limestone below any temporary casing. Further, the minimum clear spacing between piers should be at least two pier shaft diameters to develop the full load carrying capacity from skin friction.

The bearing capacity contains a factor of safety of at least 3 considering a general bearing capacity failure and the skin friction value has a factor of safety of at least 2. Normal elastic settlement of piers under loading is estimated at less than about ½ inch.

Each pier should be designed with sufficient full-length reinforcing steel and a sufficient embedment into the tan or gray limestone to resist the uplift pressure (soil-to-pier adhesion) due to potential soil swell along the shaft from post construction heave and other uplift forces applied by structural loadings. The magnitude of uplift adhesion due to soil swell along the pier shaft cannot be defined accurately and can vary according to the actual in-place moisture content of the soils during construction. It is estimated this uplift adhesion will not exceed about 2.2 ksf. This soil adhesion is approximated to act uniformly over the upper 12 ft of the pier shaft in contact with clayey soils. The uplift adhesion due to soil swell can be neglected over the portion of the shaft in contact with any non-expansive material used in the building pad or limestone.

The uplift resistance of each pier can be computed using an allowable skin friction value of 3 ksf acting uniformly over the portion of the shaft bearing in the tan or gray limestone. The top 2 ft of tan or gray limestone should be neglected in computing the uplift resistance of each pier. Also, uplift resistance should only be considered for the portion of the shaft in tan or gray limestone below the bottom of temporary casing. This uplift resistance value has a factor of safety of at least 2.
All grade beams connecting piers should be formed and not cast in earthen trenches. Grade beams should be formed with a nominal 12-inch void at the bottom. Commercially available cardboard box forms (cartons) are made for this purpose. The cardboard cartons should extend the full length and width of the grade beams. Prior to concrete placement, cartons should be inspected to verify they are firm, properly placed, and capable of supporting wet concrete. Some type of permanent soil retainer, such as pre-cast concrete panels, must be provided to prevent soils adjacent to grade beams from sloughing into the void space at the bottom of the grade beams. Additionally, backfill soils placed adjacent to grade beams must be compacted as outlined in Section 7.3.

6.2 Floor Slab for Pier-Supported Structure

Considering the subsurface conditions encountered at this site and methods used to estimate the potential vertical rise of the soil, floor slab for the proposed building could experience soil-related movements on the order of 5 inches or more if constructed at the grades discussed in Section 2.0.

These potential movements were estimated using results of absorption swell tests, in general accordance with methods outlined by Texas Department of Transportation (TxDOT) Test Method Tex-124-E and engineering judgment and experience. Estimated movements were calculated assuming the moisture content of the in-situ soil within the normal zone of seasonal moisture content change varies between a "dry" condition and a "wet" condition as defined by Tex-124-E. Also, it was assumed a 1 psi surcharge load from the slab acts on the subgrade soils. Movements exceeding those predicted could occur if positive drainage of surface water is not maintained or if soils are subject to an outside water source, such as leakage from a utility line or subsurface moisture migration from off-site locations.

In view of these potential movements, the most positive floor system for the building is a slab suspended completely above the existing highly expansive soils. A 12-inch void space should be provided between the bottom of the slab (and lowest suspended fixture/utility) and top surface of the underlying expansive clays. Cardboard carton forms or a deeper crawl space can be used to create the minimum void space. A ventilated crawl space is preferred. Provisions should be made for (a) adequate drainage of the under-floor space and (b) differential movement of utility lines, including areas where the utility penetrates through the grade beam and/or where the utility penetrates below grade areas.

If some floor slab movement is tolerable (about 1 inch), the concrete slab can be designed to bear uniformly on improved soils. It is estimated the installation of 2 ft of non-expansive fill overlying moisture-conditioned clays extending to the top of competent limestone or to a maximum depth of 12 ft below the building pad grade should reduce potential slab movements to about 1 inch. Limestone was encountered at depths of about 8 ft and 15 ft below existing grade in Borings 2 and 1, respectively. Moisture conditioning is discussed in Section 6.2.1. Non-expansive fill (select fill and flexible base) is described in Section 7.3. In choosing this method of floor slab movement reduction, the Owner is accepting some post construction seasonal movement of the floor slab (about 1 inch).

If a soil-supported floor slab is utilized for the planned building, consideration should be given to a "floating" (fully ground supported, and not structurally connected to walls or foundations) floor slab. This can reduce the risk of cracking and displacement of the floor slab due to differential
movements between the slab and foundations. A floor slab doweled into perimeter grade beams can develop a plastic hinge (crack) parallel to and approximately 5 to 10 ft inside the building perimeter. Differential movements can still occur between the grade beam and a “floating” floor slab. The structural engineer should determine the need for connections between the slab and structural elements and determine if control joints to limit cracking are needed. A properly designed and constructed moisture barrier should be placed between the slab and subgrade soils to retard moisture migration through the slab.

6.2.1 **Subgrade Improvement Utilizing Moisture-Conditioned Soil**

Movement of the slab could be reduced to about 1 inch by placing at least 2 ft of non-expansive fill (select fill or flexible base) between the bottom of the slab and the top surface of moisture-conditioned on-site clay soils. The moisture conditioned clays should extend to the top of competent limestone or to a maximum depth of 12 ft below final building pad grade, whichever occurs first. Limestone was encountered at depths of about 8 ft and 15 ft below existing grade in Borings 2 and 1, respectively. It is not necessary to undercut competent limestone encountered within the depth of excavation to install the recommended thickness of select material and moisture-conditioned clay.

Moisture-conditioning consists of over-excavating the site soils, then processing and compacting the specified minimum thickness of soil at a “target” moisture content approximated to be at least 5 percentage points above the material’s optimum moisture content as determined by the standard Proctor method (ASTM D 698). Materials with relatively lower plasticity index values may need to be placed at moisture contents closer to that of optimum moisture. The moisture-conditioned soil should be placed in 8-in thick loose lifts and compacted to a dry density of 93 to 97 percent of standard Proctor maximum dry density. Moisture conditioning of the on-site soil should extend throughout the entire building pad area and at least 5 ft beyond the perimeter of the building (including adjoining flatwork). In entrance areas, the moisture conditioning process should extend at least 10 ft beyond the perimeter of the building. However, select, non-expansive material should not extend beyond the building limits. If flatwork or paving is not planned adjacent to the structures (i.e. above the moisture-conditioned soils), a moisture barrier consisting of a minimum of 10 mil plastic sheeting with 8 to 12 inches of soil cover should be provided above the moisture conditioned soils. Moisture-conditioned soils should be maintained in a moist condition prior to placement of the required thickness of select, non-expansive material, plastic sheeting or flatwork.

The resulting estimated potential seasonal movement (about 1 inch) was calculated assuming the moisture content of the moisture-conditioned soil varies between the “target” moisture content and the “wet” condition, while the deeper undisturbed in-situ soil within the normal zone of seasonal moisture content change varies between the "dry" condition and the "wet" condition as defined by methods outlined in Texas Department of Transportation Test Method Tex-124-E.

Please note, it is the intent of the moisture-conditioning process described herein to reduce the free swell potential of the moisture-conditioned soil to 1 percent or less. Additional laboratory tests (i.e., standard Proctors tests, absorption swell tests, etc.) should be conducted during construction to verify the “target” moisture content for moisture-conditioning (estimated at 5 percentage points above the material’s standard
Proctor optimum moisture content) is sufficient to reduce the free swell potential of the processed soil to 1 percent or less. In addition, it is recommended samples of the moisture-conditioned material be routinely obtained during construction to verify the free swell of the improved material is 1 percent or less. Installation of moisture-conditioned clays should be monitored and tested on a full-time basis by a representative of ALPHA, to verify the soils tested were placed with the proper lift thickness, moisture content, and degree of compaction.

6.3 Slab-on-Grade Foundation System

Alternately, a slab-on-grade foundation system can be utilized for support of the proposed building provided some seasonal movement due to shrinking and swelling of active clays is acceptable. It should be noted that a greater risk of unsatisfactory foundation performance can occur with a slab-on-grade foundation system as compared with a drilled pier system as discussed in Section 6.1. As discussed above, we estimate current potential ground movements on the order of 5 inches or more.

Subgrade improvement procedures discussed in Section 6.2 must be performed to reduce potential seasonal movements of the building to 1 inch. Non-expansive fill material is described in Section 7.3.

Following subgrade improvement as recommended in Section 6.2, the slab-on-grade foundation should be designed with exterior and interior grade beams adequate to provide sufficient rigidity to the foundation system. A net allowable soil bearing pressure of 1.5 ksf may be used for design of all grade beams bearing on subgrade improved soils placed as described in Section 6.2. Grade beams should bear a minimum depth of 18 inches below final grade and should have a minimum width of 10 inches to utilize the recommended net allowable bearing pressure of the soil.

To reduce cracking as normal movement occurs in foundation soils, all grade beams and floor slab should be adequately reinforced with steel (conventional reinforcing steel and/or post-tension reinforcement). It is common to experience some minor cosmetic distress to structures with slab-on-grade foundation systems due to normal ground movements. A properly designed and constructed moisture barrier should be placed between the slab and subgrade soils to retard moisture migration through the slab.

6.3.1 Design of Post-Tensioned, Slab-on-Grade Foundation Systems

Design parameters for post-tensioned, slab-on-grade foundation systems are provided in Table A. The design parameters were evaluated based on the conditions encountered in the borings and using information and correlations published by PTI Third Edition and VOLFLO 1.5 computer program provided by Geostructural Tool Kit, Inc. (GTI).
TABLE A

Design of Post-Tensioned, Slab-on-Ground Foundation Systems

Potential Seasonal Movement = 1 inch
Following Subgrade Improvement as Outlined in Section 6.2

<table>
<thead>
<tr>
<th></th>
<th>EDGE LIFT</th>
<th>CENTER LIFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Moisture Distance, ft (e_m)</td>
<td>4.3</td>
<td>9.0</td>
</tr>
<tr>
<td>Differential Soil Movement, inches (y_m)</td>
<td>1.4 (swell)</td>
<td>1.1 (shrink)</td>
</tr>
</tbody>
</table>

6.3.2 Design of BRAB/WRI Slab-on-Grade Foundation Systems

The slab foundation system may be designed using the Building Research Board Report No. 33 (BRAB) as a guideline. Alternatively, the foundation may be designed based on the Design of Slab-On-Ground Foundations published by the Wire Reinforcement Institute, Inc. (WRI, Aug., 1981). These design parameters are presented in Table B.

TABLE B

BRAB/WRI Design Criteria
Potential Seasonal Movement = 1 inch
Following Subgrade Improvement as Outlined in Section 6.2

<table>
<thead>
<tr>
<th>Design Method</th>
<th>BRAB</th>
<th>WRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic Rating (C_w)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Effective Plasticity Index1</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Support Index (C)</td>
<td>0.85</td>
<td>--</td>
</tr>
<tr>
<td>Soil/Climatic Rating Factor ($1-C$)</td>
<td>--</td>
<td>0.15</td>
</tr>
<tr>
<td>Maximum Average Beam Spacing (ft)</td>
<td>--</td>
<td>18</td>
</tr>
<tr>
<td>Unconfined Compressive Strength (tsf)</td>
<td>0.5</td>
<td>--</td>
</tr>
</tbody>
</table>

1 The effective plasticity index is based on the weighted average plasticity index of the upper 15 ft of subsurface materials encountered. The top 5 ft is weighted times three, the middle 5 ft is weighted times two and the bottom 5 ft is weighted times one.

6.4 Seismic Considerations

The Site Class for seismic design is based on several factors that include soil profile (soil or rock), shear wave velocity, and strength, averaged over a depth of 100 ft. Since our borings did not extend to 100-foot depths, we based our determinations on the assumption that the subsurface materials below the bottom of the borings were similar to those encountered at the termination depth of the borings. Based on Section 1613.3.2 of the 2015 International Building Code and Table 20.3-1 in the 2010 ASCE-7, we recommend using Site Class C (very dense soil and soft rock) for seismic design at this site.
6.5 Flatwork

Flatwork, pavement, and any other soil-supported structural elements will be subjected to the same level of movement as discussed in Section 6.2. If this level of movement is not acceptable, flatwork could be supported on drilled pier foundations as described in Section 6.1. Alternatively, subgrade improvements consisting of moisture conditioning as described in Section 6.2 could be considered for reduction in soil movements in any areas where post-construction movements would be critical.

6.6 Area Pavement

Clay soils encountered near the existing ground surface at the borings will probably constitute the subgrade for most parking and drive areas. Therefore, it is recommended the existing subsurface materials be improved prior to construction as recommended in Section 6.6.1 and 7.1. A qualified Geotechnical Engineer should be retained to provide subgrade monitoring and testing during construction. If there is any change in project criteria, the recommendations contained in this report should be reviewed by our office.

Calculations used to determine the required pavement thickness are based only on the physical and engineering properties of the materials used and conventional thickness determination procedures. Pavement joining buildings should be constructed with a curb and the joint between the building and curb should be sealed. Related civil design factors such as subgrade drainage, shoulder support, cross-sectional configurations, surface elevations, reinforcing steel, joint design and environmental factors will significantly affect the service life and must be included in preparation of the construction drawings and specifications, but all were not included in the scope of this study. Normal periodic maintenance will be required for all pavement to achieve the design life of the pavement system.

Asphalt concrete pavement sections and portland cement concrete (PCC) pavement sections are provided in the following paragraphs. These pavement sections are not considered equal in performance. Over the life of the pavement structure, asphalt concrete pavement should be expected to have a shorter life and higher maintenance costs. Pavement in dumpster areas, loading docks, areas with a tight turning radius, fork lift areas and heavy truck traffic should consist of PCC. Any dumpster pads should be extended to include all wheels of any garbage trucks.

Please note, the recommended pavement subgrade preparation and pavement sections provided in Sections 6.6.1 and 6.6.2 are considered the minimum necessary to provide satisfactory performance based on the expected traffic loading. In some cases, City minimum standards for pavement section construction may exceed those recommended.

6.6.1 Pavement Subgrade Preparation

Lime treatment of the pavement subgrade is not necessary for pavements subjected exclusively to passenger vehicle traffic, although lime treatment in these areas would be generally beneficial to the long-term performance of the pavement and improve constructability. Prior to construction of pavement on untreated clay subgrade soil, the exposed subgrade should be scarified to a depth of at least 6 inches and compacted to at
least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of -1 to +3 percentage points of the material's optimum moisture content.

Lime treatment of the pavement subgrade is recommended for drive lanes, fire lanes, and dumpster traffic areas. For estimating purposes, the exposed surface of the pavement subgrade soil should be scarified to a depth of 6 inches and mixed with a minimum of 7 percent hydrated lime (by dry soil weight) in conformance with TxDOT Standard Specifications Item 260. Assuming an in-place unit weight of 100 pcf for the pavement subgrade soils, this percentage of lime equates to about 32 lbs of lime per sq yard of treated subgrade. The actual amount of lime required should be confirmed by additional laboratory tests (ASTM C 977 Appendix XI) prior to construction.

It is recommended lime modification procedures extend at least 1 ft beyond the edge of the pavement to reduce effects of seasonal shrinking and swelling upon the extreme edges of pavement. The soil-lime mixture should be compacted to at least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of 0 to +4 percentage points of the mixture's optimum moisture content. In all areas where hydrated lime is used to treat subgrade soil, routine Atterberg-limit tests should be performed to verify the resulting plasticity index of the soil-lime mixture is at/or below 15.

Mechanical lime treatment of the pavement subgrade soil will not prevent normal seasonal movement of the underlying untreated materials. Pavement and other flatwork will have the same potential for movement as slabs constructed directly on the existing undisturbed soils.

Good perimeter surface drainage with a minimum slope of 2 percent away from the pavement is recommended. The use of sand as a leveling course below pavement supported on expansive clays should be avoided. Normal maintenance of pavement should be expected over the life of the structures.

6.6.2 Portland Cement Concrete (PCC) Pavement

Following subgrade improvement as recommended in Section 6.6.1, PCC (reinforced) pavement sections are recommended in Table C.

| TABLE C
<table>
<thead>
<tr>
<th>Recommended PCC Pavement Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paving Areas and/or Type</td>
</tr>
<tr>
<td>Parking Areas Subjected Exclusively to Passenger Vehicle Traffic</td>
</tr>
<tr>
<td>Drive Lanes, Fire Lanes, Areas Subject to Light Volume Truck Traffic</td>
</tr>
<tr>
<td>Dumpster Traffic Areas, Areas subject to Moderate Volume Truck Traffic</td>
</tr>
</tbody>
</table>
Portland cement concrete should have a minimum compressive strength of 3,000 psi at 28 days in parking areas subjected exclusively to passenger vehicle traffic. We recommend a minimum compressive strength of 3,500 psi at 28 days for the drive lanes and fire truck areas. Concrete should be designed with 4.5±1.5 percent entrained air. Joints in concrete paving should not exceed 15 ft. Reinforcing steel should consist of No. 3 bars placed at 18 inches on-center in two directions.

Alternatively, mechanical lime modification of the pavement subgrade could be eliminated by increasing the PCC thickness in the pavement sections presented in Table C by 1 inch. Prior to construction of pavement on untreated clay subgrade soil, the exposed subgrade should be scarified to a depth of at least 6 inches and compacted to at least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of -1 to +3 percentage points of the material's optimum moisture content.

6.6.3 Asphalistic Concrete (AC) Pavement

Subgrade preparation as described herein is required for asphalt concrete pavement. The design recommendations provided below are based on an initial serviceability = 4.2; terminal serviceability = 2.0; reliability = 85%; and a standard deviation = 0.45. For a 20-year design life, the following asphalt concrete pavement sections are recommended. Pavement materials are described in Table D.

<table>
<thead>
<tr>
<th>TABLE D</th>
<th>Asphalt Concrete Pavement Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>100,000 ESALs (inches)</td>
</tr>
<tr>
<td>HMAC Surface Course Type D</td>
<td>2</td>
</tr>
<tr>
<td>HMAC Base Course Type B</td>
<td>3</td>
</tr>
<tr>
<td>Lime Treated Subgrade</td>
<td>6</td>
</tr>
</tbody>
</table>

Note: If heavier traffic loading is expected, ALPHA should be provided with the information and allowed to review pavement sections.

Hot Mix Asphaltic Concrete (HMAC) Courses - The HMAC surface course should be plant mixed, hot laid Type D. The HMAC base course should also be plant mixed, hot laid Type B. Each mix should meet the master specifications requirements of TxDOT Standard Specifications Item 341.

6.7 Drainage and Other Considerations

Adequate drainage should be provided to reduce seasonal variations in the moisture content of foundation soils. All pavement and sidewalks within 10 ft of the structure should be sloped away from the building to prevent ponding of water around the foundations. Final grades within 10 ft of the structures should be adjusted to slope away from the structures at a minimum slope of 2 percent. Maintaining positive surface drainage throughout the life of the structure is essential.

In areas with pavement or sidewalks adjacent to the structure, a positive seal must be maintained between the structure and the pavement or sidewalk to minimize seepage of water into the underlying supporting soils. Post-construction movement of pavement and flat-work is common.
Normal maintenance should include examination of all joints in paving and sidewalks, etc. as well as re-sealing where necessary.

Several factors relate to civil and architectural design and/or maintenance, which can significantly affect future movements of the foundation and floor slab system:

- Preferably, a complete system of gutters and downspouts should carry runoff water a minimum of 5 feet from the completed structures.

- Large trees and shrubs should not be allowed closer to the foundations than a horizontal distance equal to roughly one-half of their mature height due to their significant moisture demand upon maturing.

- Moisture conditions should be maintained "constant" around the edge of the slabs. Ponding of water in planters, in unpaved areas, and around joints in paving and sidewalks can cause slab movements beyond those predicted in this report.

- Planter box structures placed adjacent to the buildings should be provided with a means to assure concentrations of water are not available to the subsoil stratigraphy.

Trench backfill for utilities should be properly placed and compacted as outlined in Section 7.3 and in accordance with requirements of local City standards. Since granular bedding backfill is used for most utility lines, the backfilled trench should not become a conduit and allow access for surface or subsurface water to travel toward the structures. Concrete cut-off collars or clay plugs should be provided where utility lines cross building lines to prevent water from traveling in the trench backfill and entering beneath the structures.

7.0 GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

Variations in subsurface conditions could be encountered during construction. To permit correlation between test boring data and actual subsurface conditions encountered during construction, it is recommended a registered Professional Engineering firm be retained to observe construction procedures and materials.

Some construction problems, particularly degree or magnitude, cannot be anticipated until the course of construction. The recommendations offered in the following paragraphs are intended not to limit or preclude other conceivable solutions, but rather to provide our observations based on our experience and understanding of the project characteristics and subsurface conditions encountered in the borings.

7.1 Site Preparation and Grading

All areas supporting the floor slab, flatwork, or areas to receive fill should be properly prepared. Site preparation for the proposed project should include removing the remnants of existing site improvements (i.e. existing residence with associated structures, flatwork, and utilities), vegetation, topsoil, and any other unsuitable surface materials from the areas of construction. Existing foundation elements should be removed or cut off at least 1 foot below finished grade or 1 foot below the new structural elements, whichever is deeper. Abandoned utility lines should
be either removed or positively sealed to prevent possible water seepage into subgrade soils. Any soil disturbed due to removal of the existing site improvements should be re-compacted in accordance with recommendations provided in Section 7.3.

All areas supporting the floor slab, foundations, pavement, flatwork, or areas to receive fill should be properly prepared.

- After completion of the necessary stripping, clearing, and excavating and prior to placing any required fill, the exposed soil subgrade should be carefully evaluated by probing and testing. Any undesirable material (organic material, wet, soft, or loose soil) still in place should be removed.

- The exposed soil subgrade should be further evaluated by proof-rolling with a heavy pneumatic tired roller, loaded dump truck or similar equipment weighing approximately 20 tons to check for pockets of soft or loose material hidden beneath a thin crust of possibly better soil.

- Proof-rolling procedures should be observed routinely by a Professional Engineer, or his designated representative. Any undesirable material (organic material, wet, soft, or loose soil) exposed during the proofroll should be removed and replaced with well-compacted material as outlined in Section 7.3.

- Prior to placement of any fill, the exposed soil subgrade should then be scarified to a minimum depth of 6 inches and recompacted as outlined in Section 7.3.

If fill is to be placed on existing slopes (natural or constructed) steeper than six horizontal to one vertical (6:1), the fill materials should be benched into the existing slopes in such a manner as to provide a minimum bench-key width of five (5) ft. This should provide a good contact between the existing soils and fill materials, reduce potential sliding planes, and allow relatively horizontal lift placements.

Slope stability analysis of embankments (natural or constructed) was not within the scope of this study.

The contractor is responsible for designing any excavation slopes, temporary sheeting or shoring. Design of these structures should include any imposed surface surcharges. Construction site safety is the sole responsibility of the contractor, who shall also be solely responsible for the means, methods and sequencing of construction operations. The contractor should also be aware that slope height, slope inclination or excavation depths (including utility trench excavations) should in no case exceed those specified in local, state and/or federal safety regulations, such as OSHA Health and Safety Standard for Excavations, 29 CFR Part 1926, or successor regulations. Stockpiles should be placed well away from the edge of the excavation and their heights should be controlled so they do not surcharge the sides of the excavation. Surface drainage should be carefully controlled to prevent flow of water over the slopes and/or into the excavations. Construction slopes should be closely observed for signs of mass movement, including tension cracks near the crest or bulging at the toe. If potential stability problems are observed, a geotechnical engineer should be contacted immediately. Shoring, bracing or underpinning
required for the project (if any) should be designed by a professional engineer registered in the
State of Texas.

Due to the nature of the clayey soils found near the surface at the borings, traffic of heavy
equipment (including heavy compaction equipment) may create pumping and general
deterioration of shallow soils. Therefore, some construction difficulties should be anticipated
during periods when these soils are saturated.

7.2 Foundation Excavations

Limestone was encountered at depths of about 8 ft and 15 ft below existing grade in Borings 2
and 1, respectively. Borings 1 and 2 were both terminated due to auger refusal in hard limestone
at depths of 18 and 12 ft, respectively. From our experience and the borings, this limestone can
be very hard, and could cause obstruction to pier installation. The pier drilling contractor
selected should have experience installing piers in geological formation similar to this site. Also,
the pier installation contract should contain provisions for penetration or removal of obstructions.

All foundation excavations should be properly monitored to verify loose, soft, or otherwise
undesirable materials are removed and foundations will bear on satisfactory material. Soil
exposed in the base of all foundation excavations should be protected against detrimental change
in condition, such as surface sloughing, side disturbance, rain, or excessive drying.

Surface runoff should be drained away from excavations and not allowed to pond in the bottom
of the excavation. Concrete for foundations should be placed as soon as practical after the
excavation is made. That is, the exposed foundation soils should not be allowed to become
excessively dry or wet before placement of concrete. All concrete for foundations should be
placed as soon as practical after the excavation is made. Drilled piers should be excavated and
concrete placed the same day.

Prolonged exposure of the bearing surface to air or water will result in changes in strength and
compressibility of the bearing stratum. Therefore, if delays occur, straight shaft drilled piers
should be slightly widened and deepened to provide a fresh penetration surface, or a new
(deeper) full penetration should be provided. Grade beams for slab foundations should be
slightly deepened and cleaned, in order to provide a fresh bearing surface.

All pier shafts should be at least 1.5 ft in diameter to facilitate clean-out of the base and proper
monitoring. Concrete placed in pier holes should be directed through a tremie, hopper, or
equivalent. Placement of concrete should be vertical through the center of the shaft without
hitting the sides of the pier or reinforcement to reduce the possibility of segregation of
aggregates. Concrete placed in piers should have a minimum slump of 5 inches (but not greater
than 7 inches) to avoid potential honey-combing.

Observations during pier drilling should include, but not necessarily be limited to, the following
items:

- Verification of proper bearing strata and consistency of subsurface stratification with
 regard to boring logs,
• Confirmation the minimum required penetration into the bearing strata is achieved,
• Complete removal of cuttings from bottom of pier holes,
• Proper handling of any observed water seepage and sloughing of subsurface materials,
• No more than 2 inches of standing water should be permitted in the bottom of pier holes prior to placing concrete, and
• Verification of pier diameter and steel reinforcement.

Groundwater was not encountered in the borings. However, from our experience, groundwater seepage could be encountered during pier installation, and the risk of encountering seepage is increased during or after periods of precipitation. Temporary casing should be anticipated to control groundwater seepage that could occur in the clayey matrix or near the interface of the overburden soil and rock (limestone), or from fractures in the soil and rock. Casing should be seated in the clays or limestone below the depth of seepage, and all water and loosened material should be removed from the cased excavation before starting the design penetration. As casing is extracted, care should be taken to maintain a positive head of plastic concrete and minimize the potential for intrusion of water seepage. It is recommended a separate bid item be provided for casing on the contractors’ bid schedule.

Groundwater can also occur within fractures in the bearing stratum for drilled, straight-shaft piers and this may require extending the casing and deepening the piers. From our experience with similar soil and rock conditions, sometimes groundwater cannot be controlled by the use of casing, and underwater placement of pier concrete may be required. Special mix designs are usually required for tremied or pumped concrete. Proper concreting procedures should include placement of concrete from the bottom to the top of the pier using a sealed tremie or pumped concrete. The tremie should be maintained at least 5 feet into the wet concrete during placement. It is recommended a separate bid item be provided for casing and underwater concrete placement on the contractor’s bid schedule. Pier drilling contractors experienced in similar soil and groundwater conditions should be utilized for this project.

7.3 Fill Compaction

Select Fill (Non-Expansive Fill): Select fill used as non-expansive fill should have a liquid limit less than 35, a plasticity index (PI) not less than 4 nor greater than 15. Select fill should not contain deleterious material and debris. Select fill should be compacted to a dry density of at least 95 percent of standard Proctor maximum dry density (ASTM D 698) and within the range of -1 to +3 percentage points of the material's optimum moisture content. The plasticity index and liquid limit of material used as select fill should be verified during fill placement using laboratory tests. Atterberg limits tests to verify the select fill shall be performed at a frequency of at least one test per 2 feet of thickness per 5,000 square feet. Atterberg limits shall be staggered between various lifts within each 5,000 square feet.

Flexible Base Material (Non-Expansive Fill): Flexible base material used as non-expansive fill for the building pad area should meet the requirements of TxDOT Item 247, Type A or D, Grade 1-2. The material should be compacted to a minimum 95 percent of standard Proctor maximum...
dry density (ASTM D 698) and within -2 to +3 percentage points of the material’s optimum moisture content.

The following recommendations pertain to fill placement and compaction for general site grading outside the building pad area. Fill placed within the building pad area should conform to the requirements in Section 6.2.

Clay soils used for general fill with a plasticity index equal to or greater than 25 should be compacted to a dry density between 93 and 98 percent of standard Proctor maximum dry density (ASTM D 698). The compacted moisture content of the clays during placement should be within the range of +2 to +6 percentage points of the material’s optimum moisture.

Clay soils used for general fill with a plasticity index less than 25 should be compacted to a dry density of at least 95 percent of standard Proctor maximum dry density (ASTM D 698). The compacted moisture content of the clays during placement should be within the range of -1 to +3 percentage points of the material’s optimum moisture.

In cases where mass fills are more than 10 ft deep, the fill/backfill below 10 ft should be compacted to at least 100 percent of standard Proctor maximum dry density (ASTM D 698) and within –2 to +2 percentage points of the material's optimum moisture content. The portion of the fill/backfill shallower than 10 ft should be compacted as previously outlined.

Clay fill should be processed and the largest particle or clod should be less than 6 inches prior to compaction.

Compaction should be accomplished by placing fill in about 8-inch thick loose lifts and compacting each lift to at least the specified minimum dry density. Field density and moisture content tests should be performed on each lift.

Even if fill is properly compacted, fills in excess of about 10 ft are still subject to settlements over time of up to about 1 to 2 percent of the total fill thickness. This should be considered when designing deep fill areas and/or wall backfill.

7.4 Utilities

In cases where utility lines are more than 10 ft deep, the fill/backfill below 10 ft should be compacted to at least 100 percent of standard Proctor maximum dry density (ASTM D 698) and within –2 to +2 percentage points of the material's optimum moisture content. The portion of the fill/backfill shallower than 10 ft should be compacted as previously outlined. Density tests should be performed on each lift (maximum 12-inch thick) and should be performed as the trench is being backfilled.

Even if fill is properly compacted, fills in excess of about 10 ft are still subject to settlements over time of up to about 1 to 2 percent of the total fill thickness. This should be considered when designing utility lines under pavements and/or other areas with deep fill.

If utility trenches or other excavations extend to or beyond a depth of 5 ft below construction grade, the contractor or others shall be required to develop an excavation safety plan to protect personnel entering the excavation or excavation vicinity. The collection of specific geotechnical
data and the development of such a plan, which could include designs for sloping and benching or various types of temporary shoring, is beyond the scope of this study. Any such designs and safety plans shall be developed in accordance with current OSHA guidelines and other applicable industry standards.

7.5 Groundwater

Groundwater was not encountered in the borings. However, from our experience, groundwater could be encountered during general excavation at this site. The risk of encountering this seepage is increased during or after periods of precipitation. Standard sump pit and pumping procedures should be adequate to control seepage on a local basis for relatively shallow excavations.

In any areas where cuts of 2 ft or more are made to establish final grades, attention should be given to possible seasonal water seepage that could occur through natural cracks and fissures in the newly exposed stratigraphy. From our experience, seasonal seepage could occur where limestone is at or near the final site grade. In these cases, subsurface drains may be required to intercept seasonal groundwater seepage. The need for these or other de-watering devices should be carefully addressed during construction. Our office could be contacted to visually observe the final grades to evaluate the need for such drains.

8.0 LIMITATIONS

Professional services provided in this geotechnical exploration were performed, findings obtained, and recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. The scope of services provided herein does not include an environmental assessment of the site or investigation for the presence or absence of hazardous materials in the soil, surface water or groundwater. ALPHA, upon written request, can be retained to provide these services.

ALPHA is not responsible for conclusions, opinions or recommendations made by others based on this data. Information contained in this report is intended for the exclusive use of the Client (and their designated design representatives), and is related solely to design of the specific structures outlined in Section 2.0. No party other than the Client (and their designated design representatives) shall use or rely upon this report in any manner whatsoever unless such party shall have obtained ALPHA’s written acceptance of such intended use. Any such third party using this report after obtaining ALPHA’s written acceptance shall be bound by the limitations and limitations of liability contained herein, including ALPHA’s liability being limited to the fee paid to it for this report. Recommendations presented in this report should not be used for design of any other structures except those specifically described in this report. In all areas of this report in which ALPHA may provide additional services if requested to do so in writing, it is presumed that such requests have not been made if not evidenced by a written document accepted by ALPHA. Further, subsurface conditions can change with passage of time. Recommendations contained herein are not considered applicable for an extended period of time after the completion date of this report. It is recommended our office be contacted for a review of the contents of this report for construction commencing more than one (1) year after completion of this report. Non-compliance with any of these requirements by the Client or anyone else shall release ALPHA from any liability resulting from the use of, or reliance upon, this report.
Recommendations provided in this report are based on our understanding of information provided by the Client about characteristics of the project. If the Client notes any deviation from the facts about project characteristics, our office should be contacted immediately since this may materially alter the recommendations. Further, ALPHA is not responsible for damages resulting from workmanship of designers or contractors. It is recommended the Owner retain qualified personnel, such as a Geotechnical Engineering firm, to verify construction is performed in accordance with plans and specifications.
APPENDIX
A-1 METHODS OF FIELD EXPLORATION

Using standard rotary drilling equipment, two (2) test borings were performed for this geotechnical exploration at the approximate locations shown on the Boring Location Plan, Figure 1. The borings locations were established in the field using a handheld GPS device or by pacing or taping and estimating right angles from landmarks which could be identified in the field and as shown on the site plan provided during this study. The locations of the test borings shown on the Boring Location Plan are considered accurate only to the degree implied by the methods used to define them.

Relatively undisturbed samples of the cohesive subsurface materials were obtained by hydraulically pressing 3-inch O.D. thin-wall sampling tubes into the underlying soils at selected depths (ASTM D 1587). These samples were removed from the sampling tubes in the field and examined visually. One representative portion of each sample was sealed in a plastic bag for use in future visual examinations and possible testing in the laboratory.

A modified version of the Texas Cone Penetration (TCP) test was used to assess the apparent in-place strength characteristics of rock type materials. A 3-inch diameter steel cone driven by a 170-pound hammer dropped 24 inches (340 ft-pounds of energy) is the basis for TxDOT strength correlations. In this case, ALPHA modified the procedure by using a 140-pound hammer dropped 30-inches (350 ft-pounds of energy) for completion of the field test. Depending on the resistance (strength) of the materials, either the number of blows of the hammer required to provide 12 inches of penetration, or the inches of penetration of the cone due to 100 blows of the hammer were recorded on the field log and are shown on the Log of Boring sheets as “TX Cone” (reference: TxDOT Test Method TEX 132-E, as modified).

Logs of all borings are included in the Appendix. The logs show visual descriptions of subsurface strata encountered using the Unified Soil Classification System. Sampling information, pertinent field data, and field observations are also included. Samples not consumed by testing will be retained in our laboratory for at least 14 days and then discarded unless the Client requests otherwise.
Geotechnical Exploration
Eisenhower State Park Restroom Replacement
Off Armadillo Hill Drive
Denison, Texas
ALPHA Report No. G201372
B-1 METHODS OF LABORATORY TESTING

Representative samples were examined and classified by a qualified member of the Geotechnical Division and the boring logs were edited as necessary. To aid in classifying the subsurface materials and to determine the general engineering characteristics, natural moisture content tests (ASTM D 2216), Atterberg-limit tests (ASTM D 4318), and dry unit weight determinations were performed on selected samples. In addition, pocket-penetrometer tests were conducted on selected soil samples to evaluate soil shear strength. Results of all laboratory tests previously described are provided on the accompanying Log of Boring sheets.

In addition to the Atterberg-limit tests, the expansive properties of the clay soils were further analyzed by absorption swell tests (ASTM D 4546). The swell test is performed by placing a selected sample in a consolidation machine and applying either the approximate current or expected overburden pressure and then allowing the sample to absorb water. When the sample exhibits very little tendency for further expansion, the height increase is recorded and the percent free swell and total moisture gain calculated. Results of the absorption swell tests are provided on the Swell Test Data sheet, Figure 2 included in this Appendix.
SWELL TEST DATA

<table>
<thead>
<tr>
<th>Boring No.</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft)</td>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Overburden (psf)</td>
<td>375</td>
<td>875</td>
<td>625</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>56</td>
<td>48</td>
<td>59</td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>21</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>35</td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td>Initial Moisture Content (%)</td>
<td>15%</td>
<td>20%</td>
<td>17%</td>
</tr>
<tr>
<td>Final Moisture Content (%)</td>
<td>24%</td>
<td>26%</td>
<td>24%</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>5.6%</td>
<td>1.7%</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Geotechnical Exploration
Eisenhower State Park Restroom Replacement
Off Armadillo Hill Drive
Denison, Texas
ALPHA Report No. G201372

Swell Test Data
Figure 2
LOG OF BORING NO.: 1
PROJECT NO.: G201372

Client: GSBS Architects
Project: Eisenhower State Park Restroom Replacement
Start Date: 8/3/2020 End Date: 8/3/2020
Drilling Method: CONTINUOUS FLIGHT AUGER

Location: Denison, Texas
Surface Elevation:
West:
North:
Hammer Drop (lbs / in): 140 / 30

GROUND WATER OBSERVATIONS
- On Rods (ft): NONE
- After Drilling (ft): DRY
- After Hours (ft):

MATERIAL DESCRIPTION
- Tannish Brown and Gray CLAY with gypsum deposits
- Gray LIMESTONE
- TEST BORING TERMINATED AT 18 FT
- AUGER REFUSAL AT 18'

Sample Type	Recovery % RQD	TX Cone or Sid. Pen.	Penetrometer (ipf)	Unconfined Comp. Strength (ips)	% Passing No. 200 Sieve	Unit Weight (pcf)	Water Content, %	Liquid Limit	Plastic Limit	Plasticity Index
4.0 | | | | | | | | | | |
4.5+ | 112 | 15 | 56 | 21 | 35 |
4.5+ | | 18 |
4.5+ | 105 | 20 | 48 | 20 | 28 |
4.5+ | | 27 |
15.0 | | | | | | | | | | |
4.5+ | 100/ | 0.25/ |
<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>North:</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- Tannish Brown and Gray CLAY with calcareous deposits and trace of sand

- Tan LIMESTONE

- TEST BORING TERMINATED AT 12 FT
 AUGER REFUSAL AT 12’

GROUND WATER OBSERVATIONS

- On Rods (ft): NONE
- After Drilling (ft): DRY
- After Hours (ft):

<table>
<thead>
<tr>
<th>Water Content, %</th>
<th>% Passing No. 200 Sieve</th>
<th>Liquid Limit</th>
<th>Plastic Limit</th>
<th>Plastic Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hammer Drop (lbs / in): 140 / 30

Drilling Method: CONTINUOUS FLIGHT AUGER

Client: GSBS Architects

Project: Eisenhower State Park Restroom Replacement

Start Date: 8/3/2020

End Date: 8/3/2020

Location: Denison, Texas

Surface Elevation:

North:

West:

Surface Elevation:

Hammer Drop (lbs / in): 140 / 30

Drilling Method: CONTINUOUS FLIGHT AUGER

PROJECT NO.: G201372

Client: GSBS Architects

Project: Eisenhower State Park Restroom Replacement

Start Date: 8/3/2020

End Date: 8/3/2020

Location: Denison, Texas

Surface Elevation:

North:

West:
SOIL & ROCK SYMBOLS
- **(CH), High Plasticity CLAY**
- **(CL), Low Plasticity CLAY**
- **(SC), CLAYEY SAND**
- **(SP), Poorly Graded SAND**
- **(SW), Well Graded SAND**
- **(SM), SILTY SAND**
- **(ML), SILT**
- **(MH), Elastic SILT**
- **LIMESTONE**
- **SHALE / MARL**
- **SANDSTONE**
- **(GP), Poorly Graded GRAVEL**
- **(GW), Well Graded GRAVEL**
- **(GC), CLAYEY GRAVEL**
- **(GM), SILTY GRAVEL**
- **(OL), ORGANIC SILT**
- **(OH), ORGANIC CLAY**
- **FILL**

RELATIVE DENSITY OF COHESIONLESS SOILS (blows/ft)
- **VERY LOOSE**: 0 TO 4
- **LOOSE**: 5 TO 10
- **MEDIUM**: 11 TO 30
- **DENSE**: 31 TO 50
- **VERY DENSE**: OVER 50

SHEAR STRENGTH OF COHESIVE SOILS (tsf)
- **VERY SOFT**: LESS THAN 0.25
- **SOFT**: 0.25 TO 0.50
- **FIRM**: 0.50 TO 1.00
- **STIFF**: 1.00 TO 2.00
- **VERY STIFF**: 2.00 TO 4.00
- **HARD**: OVER 4.00

RELATIVE DEGREE OF PLASTICITY (PI)
- **LOW**: 4 TO 15
- **MEDIUM**: 16 TO 25
- **HIGH**: 26 TO 35
- **VERY HIGH**: OVER 35

RELATIVE PROPORTIONS (%)
- **TRACE**: 1 TO 10
- **LITTLE**: 11 TO 20
- **SOME**: 21 TO 35
- **AND**: 36 TO 50

SAMPLING SYMBOLS
- **SHELFY TUBE (3" OD except where noted otherwise)**
- **SPLIT SPOON (2" OD except where noted otherwise)**
- **AUGER SAMPLE**
- **TEXAS CONE PENETRATION**
- **ROCK CORE (2" ID except where noted otherwise)**

PARTICLE SIZE IDENTIFICATION (DIAMETER)
- **BOULDERS**: 8.0" OR LARGER
- **COBBLES**: 3.0" TO 8.0"
- **COARSE GRAVEL**: 0.75" TO 3.0"
- **FINE GRAVEL**: 5.0 mm TO 3.0"
- **COARSE SAND**: 2.0 mm TO 5.0 mm
- **MEDIUM SAND**: 0.4 mm TO 5.0 mm
- **FINE SAND**: 0.07 mm TO 0.4 mm
- **SILT**: 0.002 mm TO 0.07 mm
- **CLAY**: LESS THAN 0.002 mm
ASBESTOS ABATEMENT PROJECT WORK PLAN

FOR

EISENHOWER STATE PARK
RESTROOM REPLACEMENT PROJECT #1210136
50 PARK ROAD 20
DENISON, TEXAS 75020

AUGUST 25, 2020

PROJECT NO. 5463.01

INDIVIDUAL ASBESTOS CONSULTANT:

CRAIG FARMER
TDSHS IAC LICENSE #: 105122
EXPIRES: FEBRUARY 3, 2021

PREPARED FOR:

TEXAS PARKS & WILDLIFE DEPARTMENT
4200 SMITH SCHOOL ROAD
AUSTIN, TEXAS 78744

PREPARED BY:

FARMER ENVIRONMENTAL GROUP, LLC
4125 FAIRWAY DRIVE, SUITE 130
CARROLLTON, TEXAS 75010
972-390-8014
SCOPE OF WORK:

The general scope of work and work area methods for this project involves the removal and disposal of the following material:

Exterior Storage Room

- Removal of approximately 84 square feet of transite wall panels in the exterior storage room

Individual transite panels shall be removed substantially intact in mini-enclosures with HEPA filtration units, poly drop cloths, critical barriers, and a poly Z-flap curtain at each entrance. A remote, personal decontamination equipped with a shower and HEPA ventilation shall be established near the work area. (see Appendix II illustrations). Area and personnel air monitoring to be performed. Maintain project logs.

Area air monitoring and final clearance air sampling will be provided utilizing Phase Contrast Microscopy (PCM). Baseline monitoring may be performed during prep activities.

INDIVIDUAL ASBESTOS CONSULTANT:

CRAIG FARMER:
TEXAS DEPARTMENT OF STATE HEALTH SERVICES (TDSHS)-LICENSED
INDIVIDUAL ASBESTOS CONSULTANT (IAC) LICENSE #: 10-5122
(Expires February 3, 2021)

Project Consultant: Craig Farmer
WORK TO BE PERFORMED: The contractor is to provide all labor, materials, facilities, equipment, services, employee training and testing, permits and agreements necessary to perform the work required for the removal and disposal of asbestos-containing materials. The work will be performed in accordance with this work plan specification, TDSHS, United States Environmental Protection Agency (US EPA), and Occupational Safety and Health Administration (OSHA) asbestos regulations, and any other applicable federal, state, and local government regulations and guidelines. Whenever there is a conflict or overlapping of the above references, the strongest provisions will apply. Deviations from this work plan must be approved in writing by the Owner's Representative prior to the contractor continuing work.

PERSONNEL PROTECTION AND DECONTAMINATION: All abatement personnel shall be provided with the specified protective clothing and gear. All personnel entering and leaving the mini-enclosure abatement workspace shall adhere to procedures as follows:

A. Entering from the outside: Personal entering the regulated work areas shall be provided protective clothing and clean protective gear. Personnel entering the abatement work area shall wear two (2) sets of protective clothing.

B. Exiting the Work Area: Dispose of all protective clothing into plastic bags labeled as asbestos waste. Personnel exiting the work shall not remove protective clothing until they have arrived at the work area entry/exit. The work area entry/exit area shall be covered with a 6-mil poly drop cloth. Worker shall wet wipe or HEPA-vacuum the outer layer of protective clothing. After the outer layer of protective clothing has been wet wiped or HEPA-vacuumed, personnel shall remove the outer layer of protective clothing and exit the work area. Upon exiting the work area, worker shall proceed to the remote decontamination unit.

C. The Contractor shall instruct all employees and workers in the proper care of their personally issued respiratory equipment, including daily maintenance, sanitizing procedures, etc.

D. The Contractor’s supervisory personnel shall inspect all respiratory equipment at the beginning of each workday, including breaks and lunch periods.
TRANSITE WALL PANEL ABATEMENT PREPARATION:

MINI-ENCLOSURE CONTAINMENT PREPARATION: See drawings in Appendix II.

1. Prior to any abatement work in an area, seal off the entire area to anyone other than trained personnel and authorized visitors. Erect signs around the perimeter in accordance with US EPA and OSHA regulations and this specification. Provide 24-hour security against unauthorized entry during abatement process. Containment area must be locked when the Contractor is not on-site. Maintain a log of all persons entering and exiting the workplace.

2. Ascertain that all HVAC systems are turned off in the work areas until the workspace passes final clearance sampling.

3. All unattached furnishings shall be removed from the work area or covered with protective poly sheeting and sealed with duct tape. Furnishings left in the work area shall be HEPA-vacuumed and wet wiped upon culmination of abatement activity.

4. All HVAC System filters shall be disposed of as asbestos waste. All openings between the containment areas and adjacent areas, including but not limited to windows, doorways, ventilation openings, drains, grills, ducts, etc., shall be sealed with one (1) layer of 6-mil poly with at least a dart impact of 270 grams and tear resistance of machine direction (M.D.) of 512 grams and transverse direction (T.D.) of 2067 grams. Seal floors two (2) layers of 6-mil poly with at least a dart impact of 270 grams and tear resistance of machine direction (M.D.) of 512 grams and transverse direction (T.D.) of 2067 grams. In addition, wall materials not scheduled for removal shall be sealed with two (2) layers of 4-mil poly. The ceiling shall be sealed with one (1) layer of 4-mil poly. After all work area openings have been sealed, air filtration devices equipped with HEPA filters shall be placed.

5. Supply and ventilated exhaust air under HEPA filtration shall be maintained to create negative pressure measured by a manometer as -0.02" of water. Until final clearance sampling is achieved, the negative air system shall operate 24 hours a day.

6. HEPA ventilation capacity sufficient to provide four (4) air changes per hour in the work areas shall be provided.

7. Approval of the Asbestos Consultant shall be secured prior to the start of work for the following: enclosures, personnel protection and decontamination procedures, exposure control systems, notifications and permits, standard operating procedures, personnel training and testing, sealing and securing of the work area, and equipment for inter-room communications.
TRANSITE WALL PANEL ABATEMENT:

1. Before removing any ACBM, all furniture and fixtures shall be cleaned with HEPA vacuum and wet wipe methods and removed from containment area. Articles that cannot be removed shall be cleaned thoroughly and protected from water damage and electrical shock.

2. Except as noted herein and/or in drawings, all asbestos to undergo abatement shall be sprayed with water containing a wetting agent. The wetting agent shall be 50% poly-oxethylene ester, or the equivalent, mixed proportionately one ounce to five gallons of water. This amended water shall be applied to the material as a fine low-pressure spray to minimize fiber release. Affected material shall be saturated sufficiently throughout the removal process so that no dry asbestos is removed. A continuous fine mist of amended water shall be maintained in ambient work air and on all containment poly to maximize fiber control. Water shall not be bagged under any circumstances. Standing water shall be removed through a filtered water system. The filtered water system shall be equipped with a 20-micrometer filter and a 5-micrometer filter for proper filtration of contaminated water.

3. Transite wall panels shall be removed intact using appropriate hand tools to minimize breakage. HEPA vacuums shall be used adjacent to screwheads while unscrewing screws holding panels in place.

4. Immediately following ACBM removal, the wet asbestos shall be packed into labeled true 6-mil poly bags to prevent drying (refer to Appendix II for illustration). Bags shall not be filled more than half full, excess air must be squeezed out, the top twisted closed, folder over, and sealed with duct tape. Asbestos shall be bagged as it is removed; no accumulation of asbestos debris shall occur on the floor. All bagged material shall be packed, deflated with a HEPA vacuum, and sealed inside true 6-mil plastic bags or fiberboard drums with OSHA & NESHAP required labels. If an outer bag is used, excess air must be squeezed out and the outer bag twisted closed, the top folded over and sealed with duct tape. If a fiberboard drum is used, the top must be sealed. The exterior of the sealed drums or bags shall be thoroughly cleaned prior to loading on the truck for transportation to the landfill. No asbestos-containing waste shall leave the work site until inspected and approved by Farmer Environmental Group, LLC, and an authorized Owner’s representative signs the Waste Shipment Record.

5. All used plastic, tapes, cleaning material, and clothing shall be treated as asbestos waste material. All waste materials shall be disposed of as asbestos waste.

Craig Farmer
DSHS Individual Asbestos Consultant License #105122
License Expiration Date: February 3, 2021
INSPECTIONS & TESTING:

1. After a minimum of one pre cleaning of the workspace following removal of asbestos from applied surfaces, the Asbestos Consultant or his Project Manager shall be notified and shall inspect the first layer of poly and surfaces from which asbestos has been removed. If all visible ACBM has been removed, and if all loose debris has been removed from poly and equipment in the workplace, the first poly layer shall be removed.

2. Following the removal of the first layer of poly and after a minimum of two (2) thorough wet cleanings (with a sufficient drying time intermission as determined by the Asbestos Consultant or his Project Manager), the Asbestos Consultant or his Project Manager shall be notified for inspection and final testing. During wet cleanings, the Asbestos Abatement Contractor shall keep close control over the amount of water used to avoid any leakage. The Asbestos Consultant or his representative shall visually inspect the outer layer of poly and the workspace for any visible asbestos dust or contamination. If the visual inspection does not reveal any dust or other signs of contamination, the final layer of poly shall be sprayed with an encapsulant to lock down invisible fibers. After a sufficient drying period, the final layer of poly shall be removed, excluding critical barriers. Under the aggressive conditions described in Section 1.5 - Definitions, final clearance samples shall be collected after the second layer of poly has been removed. All critical barriers shall remain intact until the area has passed final clearance samples.

3. The final testing shall take place under active agitation of the air in the containment space. Aggressive sampling shall be conducted by the Asbestos Consultant's Air Monitoring Technician to ensure that the space may be certified as asbestos safe under occupied conditions. A minimum three (3) final clearance samples, with a minimum sample volume of 1,250 liters, shall be collected in the mini-enclosure. Clearance air samples shall be analyzed by PCM and results of 0.010 f/cc or less shall be considered satisfactory. At the discretion of the Asbestos Consultant, Transmission Electron Microscopy (TEM) shall be employed to confirm final testing results in any abatement area. If TEM is required, the containment areas shall be certified clean when air sample results collected under the above conditions and analyzed by TEM reveal 70 s/mm² or less on the filter.
4. After satisfactory final clearance sampling is achieved, any remaining barriers and the decontamination facility shall be removed. The poly, duct tape, and decontamination facility material shall be disposed of as asbestos waste. A final inspection shall be carried out by the Asbestos Consultant or his Project Manager to ensure that no debris is produced during the dismantling operations.

5. If the results of the final testing are not satisfactory, thorough wet cleaning and/or HEPA vacuuming shall be repeated until the required decontamination levels have been confirmed.
APPENDIX I

REFERENCE DRAWINGS
PROCEDURE FOR SEALING ASBESTOS WASTE DISPOSAL BAGS

1. DEFLATE ASBESTOS WASTE BAG WITH HEPA VACUUM

2. TWIST ASBESTOS WASTE BAG TAIL AND SEAL WITH DUCT TAPE

3. LOOP ASBESTOS WASTE BAG TAIL AND SEAL WITH DUCT TAPE A SECOND TIME AS ILLUSTRATED

In addition to EPA and OSHA danger labels, each bag and drum shall be marked with the Department of Transportation designation OSM-E/NA-9188.
STORAGE

WOMEN'S RR

MEN'S RR

CHASE

TYPICAL MINI-ENCLOSURE

ASBESTOS ABATEMENT LEGEND

- Containment Area Barriers
- Personal/Load-Out Decontamination Unit
- Typical Air Sample Location
- Typical HEPA Fan Unit Location
- Asbestos-Containing Transite Wall Panel to be Abated

CRAIG FARMER
INDIVIDUAL ASBESTOS CONSULTANT
TDSHS #10-5125

N

AB-1

FARMER ENVIRONMENTAL GROUPS, LLC
4130 PARKFRONT DRIVE
DENISON, TX 75021

ASBESTOS ABATEMENT PLAN

DATE 08/29/2010
JOB NO. 5483.01
DRAWN L.H. HAPLOW
CHECKED C. FARMER

TEXAS PARKS & WILDLIFE DEPARTMENT
EISENHOWER STATE PARK RESTROOM
50 PARK ROAD 20, DENISON, TEXAS 75020