
Biogeography, phylogeny, and morphological
evolution of central Texas cave and spring
salamanders

Bendik et al.

Bendik et al. BMC Evolutionary Biology 2013, 13:201
http://www.biomedcentral.com/1471-2148/13/201



Bendik et al. BMC Evolutionary Biology 2013, 13:201
http://www.biomedcentral.com/1471-2148/13/201
RESEARCH ARTICLE Open Access
Biogeography, phylogeny, and morphological
evolution of central Texas cave and spring
salamanders
Nathan F Bendik1,2*, Jesse M Meik3, Andrew G Gluesenkamp4, Corey E Roelke1 and Paul T Chippindale1
Abstract

Background: Subterranean faunal radiations can result in complex patterns of morphological divergence involving
both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in
central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography
and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and
exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations
of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and
biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated
morphological variation.

Results: Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show
evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of
intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme
troglobitic morphologies show no or very low divergence from surface populations and are geographically
interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological
variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in
morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups
encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and
may be due to developmental plasticity.

Conclusions: The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of
intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst
regions. Shallow genetic divergences among several species, evidence of genetic exchange, and nested
relationships across morphologically disparate cave and spring forms suggests that cave invasion was recent and
many troglobitic morphologies arose independently. These patterns are consistent with an adaptive-shift
hypothesis of divergence, which has been proposed to explain diversification in other karst fauna. While cave and
surface forms often do not appear to be genetically isolated, morphological diversity within and among
populations may be maintained by developmental plasticity, selection, or a combination thereof.
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Background
Radiations of karst limestone fauna are characterized by
multiple invasions into cave systems that may result in
convergent or parallel phenotypic evolution [1-4], genet-
ically admixed populations [5], and alternating periods
of isolation and gene flow between surface and cave
populations [6]. These complex histories pose problems
for phylogenetic and phylogeographic reconstruction, as-
sessment of biodiversity [7], and inference of evolution-
ary transitions [8]. Because of the discontinuous and
sensitive habitats that define karst systems, many are
“hotspots” of threatened and endangered species. The
Edwards Plateau of central Texas exemplifies this pat-
tern and harbors diverse, endemic invertebrate and ver-
tebrate species [9]. The Plateau is an uplifted Cretaceous
limestone that has eroded to form a complex, highly
subdivided aquifer system with numerous springs and
water-filled caves. These karst habitats have been widely
colonized by a group of lungless, primarily paedo-
morphic (retaining aquatic larval form while attaining
reproductive maturity) spelerpine plethodontid salaman-
ders of the genus Eurycea [10-14], of which thirteen
species are recognized. Given that many populations
of Eurycea in Texas are threatened by effects of
urbanization, such as declining water quality and de-
creased water levels from pumping of the Edwards and
Trinity aquifers [15,16], a detailed understanding of gen-
etic structure and diversity in the group is essential (par-
ticularly with regard to identification of species and their
distributions). In addition, these salamanders exhibit ex-
tensive morphological variation associated with both
cave (subterranean) and surface habitats, making them
well suited for investigation of parallel evolution of mor-
phological traits in similar environments (e.g., [17]).
The central Texas Eurycea have a complicated taxonomic

history [10,11,14,18-21], in part because convergence or
parallelism in cave populations has confounded studies that
relied solely on morphology or morphometrics (e.g., [22],
but see [17]). Conversely, morphological conservatism (pri-
marily among surface-dwellers) has also led to underesti-
mation of species diversity [10,20]. Where morphological
data have failed, molecular phylogenetic studies have clari-
fied higher-level, and in some cases species-level relation-
ships within the group [10,21]. Although members of this
group belong to the genus Eurycea under a traditional
Linnaean classification scheme, Hillis et al. [21] recognized
additional well-supported clades under an unranked system
(PhyloCode [23]). The deepest split (at least 15 Ma BP;
[24]) corresponds to a clade occurring north of the
Colorado River (Septentriomolge) and a clade south of
the Colorado River (Notiomolge, consisting of clades
Blepsimolge and Typhlomolge). The distribution of
Blepsimolge includes caves and springs from the vicinity of
Austin and San Marcos in the east and extending west to
Val Verde County. Typhlomolge comprises exclusively sub-
terranean species sister to and essentially sympatric with
Blepsimolge along the southeastern periphery of the
Edwards Plateau [10,21]. Blepsimolge can further be divided
into eastern and western groups, which appear to be geo-
graphically discontinuous and are well differentiated genet-
ically [10,20]. The western group is often termed the
E. troglodytes complex [10,20]. Here we focus on the clade
Blepsimolge from the eastern region, which comprises
populations assigned to six nominal species (E. latitans,
E. pterophila, E. nana, E. neotenes, E. sosorum and E.
tridentifera). Hereafter, we refer to these populations as the
“eastern Blepsimolge”. Relationships among many popula-
tions remain uncertain and the validity of some species in
this group is questionable [10,20].
Populations of central Texas Eurycea exhibit habitat-

associated morphological variation. Surface populations,
found in springs, spring outflows and low-order streams,
are typically pigmented, with muscular limbs, elongated
trunks, and well-developed eyes. Subterranean populations
exhibit a continuum of variation ranging from surface-like
to highly troglomorphic [22], with the most extreme exam-
ples being E. tridentifera (eastern Blepsimolge) and, at the
furthest end of the “troglomorphic spectrum”, E. rathbuni,
E. robusta, and E. waterlooensis (Typhlomolge). These
“extreme” species have vestigial eyes, long spindly limbs,
shortened trunks, broad flattened snouts, and highly re-
duced skin pigmentation. Although morphological conver-
gence between E. tridentifera and Typhlomolge has been
established [17], the extent of morphological divergence
(and parallelism) among other surface and subterranean
populations of the eastern Blepsimolge has not been for-
mally evaluated. Patterns of morphological variation within
and among these populations are complex, as there may
have been multiple independent invasions into cave sys-
tems, and because of the structural and hydrogeological
complexity of cave and surface habitats. Here we provide a
phylogenetic analysis of the eastern Blepsimolge based on
mtDNA sequence data from extensive sampling of surface
and subterranean sites, and we relate our phylogenetic hy-
pothesis to new data on morphological variation within the
group. Specifically, we characterize broad patterns of mor-
phometric variation using multivariate analysis, evaluate
the extent and phylogenetic distribution of cave-associated
morphologies, and discuss evolutionary, developmental,
and taxonomic implications.

Methods
Taxon sampling for molecular analyses
Salamanders were collected from springs and caves
across a seven county area of the southeastern Edwards
Plateau. Our data set includes more than triple the num-
ber of sites sampled in previous studies [10,21] including
extensive, fine-scale examination of critical, and formerly
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unsampled and/or previously inaccessible regions. Data
were obtained for 112 specimens collected from 45
springs and 26 caves in the southeastern Plateau region.
These include representatives of the E. latitans complex
(sensu [10,20]), E. pterophila, E. nana, E. neotenes,
E. tridentifera and E. sosorum (eastern Blepsimolge), plus
multiple newly sampled populations not previously
assigned to species and outgroup samples from
E. rathbuni (Typhlomolge) and the E. troglodytes com-
plex (western Blepsimolge). We adhered to animal wel-
fare protocols outlined by the University of Texas
Arlington (IACUC # A.07.021). Specimen details are
available in Additional file 1.

Laboratory methods
DNA was extracted from muscle or liver tissue using
several methods. For all of the tissue samples obtained
between 2003 and 2007, DNA was extracted using the
DNeasy kit from Qiagen. DNA for specimens collected
prior to 2003 was extracted primarily using the STE
method described by Hillis et al. [25] and a modification
of the Chelex extraction method [26], described by
Chippindale et al. [10]. We focused on two mitochon-
drial DNA (mtNDA) sequence regions for our phylogen-
etic analysis: a 1110 bp fragment of cytochrome b
(Cytb), and a 619 bp fragment of NADH dehydrogenase
subunit 2 plus adjacent tRNATRP and partial tRNAALA

(ND2). Most PCR products were amplified using a
standard Taq polymerase (New England Biolabs or
Promega) or Hot Start Ex-Taq (Takara-Mirus) on MJ Re-
search PTC 200 gradient and PTC 100 thermal cyclers.
Amplification for PCR and sequencing was performed
using the primers listed in Table 1. PCR conditions that
Table 1 List of primers used to amplify and sequence gene fr

Primer name Primer sequence (5’-3

PGLU GAARAAYCANTRTTGTAT

PGLU-TAT** GAARAAYCANTRTTGTAT

MVZ-15 [27] GAACTAATGGCCCACAC

HEM-CB1-5’ CCATCCAACATCTCAGC

CYTBTN5Fv2 CATATTTAGGRGAAACA

CYTBTYPHmR GTCKGGGYTAGAATTAA

EurTXCRThr GYCAATGTTTTTCTAAAC

METf L4437 AAGCTTTTGGGCCCATA

COIr H5934 TGCCAATATCTTTGTGAT

ND2f L5002* AATCAACCACAAATCCG

ASNr H5692* TTAGGTATTTAGCTGTTA

MVZ 202** [28] GCGTCWGGGTARTCTGA

ND2 includes adjacent Ala and Trp tRNA genes.
*indicates primer was only used for sequencing, and not PCR.
** indicates external primer for nested PCR.
yielded the most consistent results were as follows:
Reactions consisted of 1–2 μl of dilute DNA (typically
10-50 ng of DNA, but sometimes as high as 300 ng),
0.5–1.0 μM of each primer, 0.75 mM dNTPs mix, poly-
merase buffer (1.5 mM MgCL2), and 1–2 U Taq (or 0.5
U ExTaq) polymerase in a total volume of 20 μl. Occa-
sionally, 2.5% DMSO (final concentration) was used in
difficult PCR reactions. Thermal cycling conditions var-
ied greatly depending on the template and difficulty of
amplification. Typical conditions were as follows: Step 1:
96° 3 min; Step 2: Annealing temp. 50° 30 s; Step 3: 72°
1 min/kb; Step 4: 96° 20 s; Step 5: repeat steps 2–4
(× 30); Step 6: 72° 10 min; Step 7: 4° hold. Variations of
this profile included a step-up annealing temperature,
whereby the first 2 or 3 replications included a 3–5°
lower annealing temperature, and then were raised to
the standard annealing temperature for the remaining
cycles. Some PCR reactions (especially for difficult sam-
ples) were performed using Phusion or Phusion II DNA
polymerase (New England Biolabs), generally following
manufacturer’s instructions but in 5–10 μL total vol-
umes and including BSA and DMSO (“1X” and 3.0 mM
final concentrations, respectively). Often, these reactions
were performed “semi-nested” with a third primer added
at 0.1X the concentration of each of the other two
(PGLU-TAT for Cytb, and cytochrome oxidase I primer
MVZ 202 for ND2; Table 1). Typical reaction profiles in-
volved initial denaturation for 2 min at 98°, subsequent
denaturations at 98° for 10 s, annealing times of 5–10 s,
and extension times of 10–20 s at 72° with a final
10 min extension step. Generally “touchdown” methods
were used in which annealing temperatures were succes-
sively dropped in increments of 2-3°, from about 58–50°
agments in this study

’) Amplified region

TCAAC Cytb

TCAACTAT Cytb

WWTACGNAA Cytb

ATGATGAAA Cytb

CTTGTTCA Cytb

TTCCTG Cytb

TACAACAGCATC Cytb

CC ND2

TTGTT ND2

AAAAAT ND2

A ND2

ATATCGTCG ND2
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for Cytb and 62–55° for ND2, with increasing numbers
of cycles at each lower temperature for a total of 35–
40 cycles.
PCR products were purified using Qiagen gel extrac-

tion or PCR purification kits following the manufac-
turer’s protocols, or if nonspecific products were absent,
a combination of exonuclease I and shrimp alkaline
phosphatase enzymes (USB) were used to digest single-
stranded DNA and phosphorylate dNTPs. Both strands
of each amplicon were sequenced for complete or
nearly-complete overlap for most templates using ABI
Big Dye v3.1 chemistry. Unincorporated products were
removed via ethanol precipitation using 0.75 M sodium
acetate and 125 mM EDTA. Applied Biosystems 377 and
3130xl machines were used for sequencing.

Alignment and phylogenetic analysis
Raw sequence chromatograms were edited with
Sequencher v4.2, v4.3 and v4.5 (Gene Codes Corp., Ann
Arbor, MI, USA). Multiple alignments were conducted
with MEGA v5 [29] using MUSCLE [30]. For phylogen-
etic analyses, Eurycea rathbuni was chosen as the
outgroup because it is well supported as sister to
Blepsimolge in previous molecular studies [10,17,21].
Bayesian phylogenetic analysis of the combined Cytb
and ND2 gene segments was run using MrBayes v3.1.2
[31] on the CIPRES Science Gateway [32]. Nucleotide
models of evolution were determined using jModeltest
v0.1.1 [33,34]. In MrBayes, the parameters statefreq,
revmat, shape and pinvar were allowed to vary by gene
segment. Default priors set by MrBayes were used except
for the branch-length priors; branch-length priors were
set as exponential with means of 1, 0.1, 0.01 and 0.001
in four separate runs to test prior sensitivity, since a
large branch-length prior can result in unrealistically
long trees [35]. Each analysis was run twice with 4
chains (one cold, three heated), 5 million MCMC gener-
ations and a sample frequency of 100. Burn-in was de-
termined by examining the log files generated by
MrBayes using program Tracer v1.5.0 [36]; parameter
traces were visually assessed for stationarity. The post-
burn-in trees from both runs were combined to calculate
a majority-rule consensus with a cutoff of 50%.

Morphological data and analyses
We measured a series of ten standardized distances
based on external morphology from 255 ethanol-
preserved specimens catalogued at the following collec-
tions: Texas Natural History Collection, The University
of Texas at Austin; Museum of Vertebrate Zoology, Uni-
versity of California, Berkeley; and the Amphibian and
Reptile Diversity Research Center at the University of
Texas at Arlington [Additional file 2]. Our sample was
primarily organized by collecting locality and included
representatives of each species of eastern Blepsimolge, as
well as comparative material from the exclusively subter-
ranean species of Typhlomolge (E. rathbuni and E.
waterlooensis). Measurements ≥ 20 mm were taken with
a digital caliper and rounded to the nearest 0.1 mm;
measurements < 20 mm were made with an ocular mi-
crometer mounted on a dissecting microscope and
rounded to the nearest 0.01 mm. Morphometric vari-
ables were selected from Chippindale et al. [10] and in-
cluded the following measurements: AG (axilla-groin
length); ALL (anterior limb length, from insertion to tip
of third toe); ED (eye diameter); HLA (head length A,
distance from tip of snout to gular fold); HLB (head
length B, distance from posterior margin of eye to
posterior-most gill insertion); HLC (head length C, dis-
tance from tip of snout to posterior-most gill insertion);
HLL (hind limb length, from insertion to tip of third
toe); HW (head width at rictus of mouth); IOD
(interocular distance); SL (standard length, distance from
tip of snout to posterior margin of vent). Eye diameter
was determined using maximum ocular disc diameter,
i.e., portion of dark pigment including and surrounding
the focusing portion of the eye, under 64X magnification
with backlighting. Results were highly consistent and re-
peatable among specimens examined by PC, CR, and
AG. We used principal components analysis (PCA) to
characterize broad patterns of morphological variation,
and to explore correlation structure among variables.
PCA was carried out with Systat 12.02 (Systat Software,
Inc., Chicago, IL, USA), using the correlation matrix de-
rived from log10-transformed variables. Although greater
separation of groups in ordination space could be
achieved by reducing the influence of size through ana-
lysis of measurement residuals, we elected against this
procedure for the following reasons: (1) the joint influ-
ence of size and shape on phenotype is biologically
relevant (e.g., [37]); (2) in our data set, individual mea-
surements scaled to SL with different slopes and func-
tions, making residuals problematic to compare with
each other [38]; and (3) measurements spanned almost
three orders of magnitude; thus, a common scaling fac-
tor would likely model more noise than signal for
shorter measurements. Furthermore, variance attribut-
able to size and shape cannot be separated with only lin-
ear measurements [39]. Some of these issues also
influence raw or transformed measurement data that is
input into PCA, but may be compounded by further
processing.

Results
Phylogenetics
The length of the combined Cytb and ND2 alignment
was 1729 bp. Thirty-four sequences were slightly shorter
than the others; unsequenced regions were treated as
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missing data. The maximum number of missing bases
(including both Cytb and ND2) was 91 for one speci-
men; the average value was 7. Including outgroup taxa,
380 sites were variable and 226 of these were
parsimony-informative. Of 107 eastern Blepsimolge
specimens, 47 haplotypes were recovered from 71
different springs and caves, for which 155 sites were
variable and 72 were parsimony-informative. Genbank
accession numbers are KC355860–KC355971 and
KC355972–KC356083 for Cytb and ND2, respectively
[see Additional file 1]. The model with the highest
AICc score according to jModeltest was GTR + G for
both Cytb and ND2 alignments. Branch length priors
of exponential mean 1, 0.1 and 0.01 resulted in unreal-
istically long tree lengths; results from the smallest (ex-
ponential mean of 0.001) branch-length prior analysis
are presented (mean tree length = 0.28, LCL = 0.26,
UCL = 0.30), although there were no significant differ-
ences in tree topologies. Samples from the first
500,000 iterations were discarded as burn-in.
Phylogenetic results agree with those of previous

studies regarding the deepest splits within Eurycea from
the southern Edwards Plateau (exclusive of clade
Typhlomolge, the outgroup), and the deep nodes are
strongly supported. The most basal split is between
the E. troglodytes complex (western Blepsimolge) and the
eastern Blepsimolge [10,21]). Also consistent is the
distinctiveness of a population that may represent an
undescribed species, from Pedernales Springs [10].
Eurycea sp. Pedernales is sister to the remaining eastern
Blepsimolge, followed by E. nana from the type locality,
San Marcos Springs (and individuals that appear to rep-
resent E. sosorum but possess E. nana-like haplotypes;
collectively clade S/N) (Figure 1). Eurycea sosorum (pri-
mary haplotype at Barton Springs, the type locality) is
sister to the remaining clade, which includes populations
representing E. latitans, E. neotenes, E. pterophila and E.
tridentifera plus others that have not been assigned to
species (Figure 1). We refer to this clade as the Eurycea
neotenes complex (after the first-described member of
the group [40]; see Discussion), which is distributed
throughout the Cibolo, Guadalupe and Blanco river wa-
tersheds (Trinity Aquifer), but also includes several pop-
ulations that occur along the southeastern edge of the
Edwards Plateau (Edwards Aquifer; Figure 2).
Although there are some highly supported clades

within the E. neotenes complex, primarily comprising
geographically proximate populations, these do not
strictly correspond to currently recognized species
boundaries (Figures 1 and 2; [10]). Divergences among
populations within this region are low (average uncor-
rected p-distance = 0.4%) and there is extensive inter-
and sometimes intrapopulation morphological variation
(e.g., Figure 3). The weakly supported clade LT includes
representatives (including topotypes) of both E. latitans
and E. tridentifera (Figure 1). Clades BP1, BP2 (Blanco
River drainage populations of E. pterophila) and BGP
(Blanco & Guadalupe River E. pterophila) each contain
populations assigned to E. pterophila [10], but form a
polytomy in the 50% majority-rule tree with clade LT
and several other populations (Figure 1). Group BGC
contains four populations distributed across the Blanco,
Guadalupe and Cibolo drainages that form a polytomy
with BP1, BP2, BGP and LT. Collectively BP1, BP2, BGP,
LT and BGC form a highly supported clade that includes
most populations previously assigned to E. latitans, E.
tridentifera and E. pterophila. Clade N includes popula-
tions assigned to E. neotenes as well as the population
from Comal Springs (Figure 1), which has been sug-
gested to be a distinct species [10]. Clade FT includes
populations previously assigned to E. latitans [10] that
occur in or near the Fort Terrett limestone formation.
Clades N, FT and the recently discovered population at
White Springs form a polytomy, while the previously
unsampled Bullis Springs 9–29 and 9–83 are weakly
supported as sister to the rest of the E. neotenes com-
plex. The latter three populations exhibit relatively high
genetic divergences compared to the rest of the Eurycea
neotenes complex [average uncorrected p-distances 1.2%
(White Springs) and 0.7% (Bullis Springs 9–29 & 9–83)].
Patterns suggestive of mitochondrial introgression are

also evident for several populations (Figure 1). Haplo-
types from Jacob’s Well (Blanco River drainage) occur in
clades BP1 and BGP. Additionally, there is potential
introgression and/or gene flow between adjacent popula-
tions of clades LT and N, as haplotypes from both clades
are found in the Stealth Cave and Bucket o’ Toads Cave
populations. Our sample of E. sosorum (putatively en-
demic to Barton Springs) also contains two distinct
mitochondrial haplotypes, one unique to Barton Springs
at high frequency (approximately 70%; unpublished data,
[41]) and one that groups with that of E. nana (San Mar-
cos Springs) and other Barton Springs segment popula-
tions (Blowing Sink, Cold Spring and Taylor/Upper
Taylor Springs; Figures 1 and 2).

Morphology
The first three principal components (PCs) account for
96.9% of the total variance in the morphological data set.
The first PC (78.7% of total variance) has high positive
factor loadings for all variables, although somewhat
lower for ED, and reflects the overall positive correla-
tions between individual measurements and body size
(Table 2). The second PC (9.5% of total variance) is
structured primarily by the broad and diffuse variation
exhibited by cave populations (Figure 4a). Along this
axis, surface populations form a cohesive cluster with
primarily negative factor scores. The most extreme



Figure 1 Fifty percent majority-rule consensus phylogram of eastern Blepsimolge based on Bayesian analysis. Posterior probabilities of
node support greater than or equal to 95% are indicated by asterisks. Species designations (indicated by colored blocks) follow those given by
[10], and we include all of the same populations from their molecular analysis plus numerous new samples. Hollow squares indicate
topotypical specimens.
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troglomorphs (i.e., Typhlomolge) group together with
high factor scores on both PC1 and PC2. Subterranean
populations of the eastern Blepsimolge, particularly those
assigned to E. tridentifera, overlap partially with
Typhlomolge, but on average have slightly lower factor
scores along PC1 and PC2. Thus, the combination of the
first and second PCs, and particularly PC2, corresponds
to a gradient from surface to cave morphologies, with
surface specimens overlapping broadly in ordination
space with cave specimens but not vice versa. PC2 was



Figure 2 Geographic distribution of eastern Blepsimolge mtDNA clades in relation to species boundaries, habitat and major
physiographic features. Squares and circles represent spring and cave localities, respectively. Clade associations are labeled by color for each
sampled population; populations with haplotypes from two distinct clades are bicolored. Approximate distributions for Eurycea neotenes complex
species (colored lines) are drawn according to designations by [10] although these designations are not entirely consistent with our phylogenetic
hypotheses. Similarly, physiographic boundaries also appear to be poor predictors of mtDNA clade distributions. B9 = Bullis springs 9–83 and
9–29; CS = Comal Springs; PS = Pedernales Springs.
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structured primarily by the inverse relationship between
two sets of variables: AG and ED had high negative fac-
tor loadings while both HLL and IOD had high positive
factor loadings. In summary, cave populations were
characterized by small eye diameters and short axilla-
groin lengths, and by long hind limbs and interocular
distances.
Morphological variation with respect to cave popula-

tions is complex (Figure 4). Some cave populations (e.g.,
Honey Creek Cave, Pfeiffer’s Cave) separate into at least
two discrete groups in ordination space. For Honey
Creek Cave (the type locality of E. tridentifera), one
group is extremely troglomorphic while the other seems
to be intermediate between troglomorphic and surface
forms. For Pfeiffer’s Cave (near the type locality of E.
latitans), both groups are well separated from each
other, but also from the main cluster of surface forms.
Only five cave populations (Preserve Cave, Honey Creek
Cave, Badweather Pit, Camp Bullis Cave #1, and Camp
Bullis Cave #3) overlapped partially in ordination space
with the Typhlomolge specimens; thus, cave populations
of eastern Blepsimolge were different from Typhlomolge



Figure 3 Diversity of head morphology and pigmentation within the eastern Blepsimolge. Parallel patterns of morphological evolution are
evident in the troglomorphic specimens from clades LT, N and BGP, although all labeled clades contain surface forms (i.e., having fully-developed
eyes and dark pigmentation). Localities for individuals pictured are as follows: 1 Honey Creek Cave, 2 Cascade Caverns, 3 Camp Bullis Cave #3,
4 Cascade Caverns, 5 Bullis Bat Cave, 6 Golden Fawn Cave, 7 Preserve Cave, 8 CM Cave, 9 Preserve Cave, 10 Hoffman Ranch Estavelle, 11 Fern
Bank Spring, 12 Jacob’s Well, 13 Hector Hole, 14 Lewis Valley Cave, 15 Sharon Spring, 16 Morales Spring, 17 Taylor Springs.
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in at least some aspects of morphology. Some of these
populations exhibit distinctive troglomorphic variation,
including Ebert Cave, Pfeiffer’s Cave, and Grosser’s Sink-
hole. Yet other cave populations form relatively homoge-
neous clusters that were intermediate in ordination
space between surface and extremely troglomorphic
populations (e.g., Stealth Cave, Sharon Spring, and
Sattler’s Deep Pit). Finally, specimens from T-Cave form
a cohesive cluster indistinguishable from the main group
of surface specimens.
The ordination of PC1 and PC3 (8.7% of total variance)

reveals an unexpected and novel pattern of morphological
variation in central Texas Eurycea: the eastern
Blepsimolge form two discrete groups, with specimens
of Typhlomolge mostly peripheral to or separate from
these groups (Figure 4b). These distinct groups within
eastern Blepsimolge do not correspond to geography,
recognized species limits, phylogeographic structure, or
habitat (unless at a scale finer than the cave/surface
dichotomy used in this study). At the level of individual
localities, cave and surface sites exhibited parallel pat-
terns; some surface and cave populations include speci-
mens from only one morphological group, while other
populations are composed of specimens from both groups
(Figure 5). A scatterplot of factor scores from each group
indicates a negative relationship between PC3 and PC1 for
each group (Figure 4b), which suggests that allometric dif-
ferences influence group ordination. Although these groups



Table 2 Factor loadings for variables, eigenvalues, and
percent of total variance explained for principal
components

Measurement PC 1 PC 2 PC 3

AG 0.741 −0.315 −0.583

ALL 0.965 0.150 0.065

ED 0.342 −0.857 0.384

HLA 0.978 −0.006 0.128

HLB 0.970 0.101 0.149

HLC 0.979 0.032 0.157

HLL 0.960 0.174 0.100

HW 0.963 0.067 0.093

IOD 0.945 0.158 0.076

SL 0.821 −0.150 −0.538

Eigenvalue 7.870 0.949 0.868

% Variance Explained 78.7 9.5 8.7

Principal components were derived from the correlation matrix of log10-
transformed morphometric data.
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are not structured on the basis of habitat designation, the
variables that most strongly influence PC3 include mea-
surements that were important in the gradient of surface-to
-cave forms identified from PC2. The highest positive factor
loading is for ED and the only negative loadings are for AG
and SL (Table 2). In contrast, both AG and ED weight
negatively on PC2. Thus, PC3 represents primarily residual,
uncorrelated variation in ED and AG, variables that other-
wise show a strong positive correlation along the gradient
of surface-to-cave morphologies.

Discussion
Phylogeography
The mtDNA-based phylogeny shows a complex pattern
in which three species, E. sp. Pedernales, E. nana and E.
sosorum, are successively sister to a clade (the Eurycea
neotenes complex) that includes E. latitans, E. neotenes,
E. pterophila, E. tridentifera, plus other previously un-
assigned populations. Short branch lengths and lack of
reciprocally monophyletic relationships to distinguish
species within the Eurycea neotenes complex (Figure 1)
indicate recent divergences coupled with incomplete
lineage sorting and recent or ongoing gene flow (thus,
potential conspecificity). Relationships among popula-
tions of the Eurycea neotenes complex follow a pattern
that appears to be determined more by geographic prox-
imity than by habitat (spring vs. cave) or morphology
(Figure 2), and this pattern is not entirely consistent with
currently recognized species boundaries (Figure 1).
This complex phylogeographic pattern likely reflects

the dynamic nature of karst aquifer systems inhabited by
central Texas Eurycea. The dissolution of limestone
strata alters water flow routes over time, generating new
connections between formerly disjunct populations and
severing others in the process. On a shorter time scale,
varying climatic conditions (e.g., floods or droughts) can
influence hydrogeologic pathways [42] and transiently
facilitate or hinder gene flow across the karstic land-
scape. Although geographic proximity is generally a
good predictor of relatedness within the eastern
Blepsimolge, there are many exceptions to this pattern
that reflect the complexity of gene flow among salaman-
ders within these karst aquifers. Some populations of
Eurycea appear to be locally isolated while others have
maintained genetic and hydrogeological connectivity
with other populations. For example, White Springs is a
small outflow in the Blanco River drainage, and based
on its location, would be expected to have close genetic
affinity to other Blanco and Guadalupe River populations
(e.g., clades BP1, BP2, BGP). However, salamanders from
White Springs are substantially divergent in mtDNA se-
quence and this population forms a polytomy with FT and
N, which collectively are sister to the remaining members
of the E. neotenes complex (Figure 1). In addition, the
White Springs population is distinguished by several unique
nuclear sequence alleles (PC, unpublished data). In two
other instances we found that populations from geograph-
ically close springs appeared distantly related. Bullis springs
9–83 and 9–29 are adjacent to many N populations but are
weakly supported as sister to the rest of the E. neotenes
complex; FT populations are a very short geographic dis-
tance from LT populations as well but do not fall within
that group (Figure 2).
In contrast to the above examples of more distantly re-

lated, but geographically proximate populations, other
populations within the E. neotenes complex that have
shared or similar haplotypes occur across a relatively
wide geographic range despite potential barriers to gene
flow. Because populations of eastern Blepsimolge are re-
stricted to karst-associated waters (wet caves, springs,
spring-fed streams), rivers can act as barriers to gene
flow [10,43]. However, the BGP clade is distributed
across two river drainages (Blanco and Guadalupe),
suggesting recent gene flow and hydrogeological con-
nectivity between these regions despite modern riverine
barriers. For example, the Preserve Cave population (in
which individuals exhibit troglomorphism similar to that
of E. tridentifera; Figure 3) is south of the Guadalupe
River but shares an identical haplotype with Horsejump
Spring, which is north of the Blanco River. While gene
flow between these populations may not currently be
ongoing, their shared mitochondrial haplotype suggests
recent hydrogeological connections and/or dispersal
across contemporary barriers.
Temporary hydrogeological connections may also result

in introgression between distinct species. Eurycea sosorum
and E. nana inhabit springs that are discharge points for



Figure 4 Scatterplots of factor scores from principal components analysis (PCA) of log10-transformed measurements. 4a–c: Ordination
of specimens of the eastern Blepsimolge (circles) and Typhlomolge (squares; includes E. rathbuni and E. waterlooensis) clades are shown. Closed
and open symbols represent specimens collected from cave and surface localities, respectively. 4d: Ordination of morphological variation within
and among cave populations of central Texas Eurycea (PC1 vs. PC2). Populations with N > 3 are shown with colored convex hull polygons
(individual specimens removed except for outliers). Light gray circles indicate surface specimens; dark gray circles indicate cave specimens from
localities with N≤ 3.

Bendik et al. BMC Evolutionary Biology 2013, 13:201 Page 11 of 18
http://www.biomedcentral.com/1471-2148/13/201
large regions of the Edwards Aquifer (the Barton Springs
and San Antonio segments) and populations of both
species from the type localities are morphologically and
genetically distinctive [10,41,44,45]. However, the presence
of E. nana-like haplotypes (clade S/N) throughout Barton
Springs segment populations including E. sosorum (at a fre-
quency of 100% in geographically intermediate springs and
caves, and approximately 30% at Barton Springs itself; NB
and PC, unpublished data [41]) indicates recent mtDNA
introgression between these species. This is unexpected,
since the traditional view of Edwards Aquifer hydrogeology
suggested a groundwater divide between the Barton Springs
segment, which drains north to Barton Springs, and a San
Antonio segment, which drains to San Marcos and other
large springs to the south (Figure 2; [46,47]). Recent dye
tracing studies are beginning to challenge this view [47], as
groundwater almost anywhere within Hays County may
flow either north to Barton Springs (Travis County) or
south to San Marcos Springs depending on environmental
conditions (e.g., drought [42]). This hydrogeologic pattern
may explain the presence of E. nana-like haplotypes within
the Barton Springs segment. This and several other exam-
ples of shared haplotypes between genetically distinct
groups (between N and LT; BGP and BP1) suggest that
many of these species are not reproductively isolated. Al-
though we cannot rule out shared ancestral polymorphism
and incomplete lineage sorting, the fact that most of these
cases occur among populations in relatively close geo-
graphic proximity (with the potential for hydrologic con-
nection, past or present) is suggestive of at least sporadic
gene flow.
Ecological segregation has also facilitated diversifica-

tion of the eastern Blepsimolge through repeated
colonization of subterranean habitats. However, genetic
divergence between spring and cave populations gener-
ally is low despite the morphological diversity of the



Figure 5 Congruent patterns of morphological variation for
selected surface (a) and cave (b) populations. Localities are
shown where specimens cluster in either of two groups or where
specimens cluster in both groups. Light gray circles and squares
indicate Blepsimolge and Typhlomolge, respectively.
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group. Most cave populations within the E. neotenes
complex are distributed throughout the Lower Glen
Rose (LGR) limestone formation and the most extreme
troglomorphic forms (e.g., E. tridentifera) occur within
the southern LGR (Figure 2). The morphological dis-
tinctiveness of E. tridentifera prompted Sweet [22] to
suggest that these caves are among the oldest in the
plateau region, which would have allowed ample time
for the evolution of cave-associated features. Cavern de-
velopment in this region coincided with the erosion of
the Upper Glen Rose (UGR) limestone formation,
exposing the LGR to extensive karstification. This
process has been dated to approximately 1.3 Ma to 990
ka BP [48], putting a theoretical bound on the earliest
cave colonization by surface populations. While cave-
dwelling troglomorphs may have already inhabited UGR
caves and later colonized newly available habitat when
the LGR was karstified, this scenario is less likely given
that the much lower extent of karstification exhibited by
the UGR in this region [48] suggests that (1) the exten-
sive subterranean habitat created within the LGR was
novel, and (2) the extremely low mtDNA divergences
between subterranean and surface populations within
the E. neotenes complex are concordant with a pattern
of recent rather than old colonization. The patterns of
karst aquifer evolution and the complex evolutionary
history of eastern Blepsimolge pose a challenging
phylogeographic puzzle that likely will only be solved
with additional sampling and incorporation of rapidly
evolving nuclear markers as well as a better under-
standing of regional hydrogeology.

Morphology
The remarkable array of morphological diversity in east-
ern Blepsimolge (Figure 3) is related to the extent to
which populations exploit surface versus cave habitats.
In general, subterranean forms show, to varying degrees,
loss of pigmentation, shortening of the trunk, flattening
and broadening of the skull, lengthening of the limbs,
and reduction (and sometimes loss of function) of eyes.
PCA indicates that surface salamanders occupy a rela-
tively tight cluster in morphospace, while subterranean
salamanders show more diffuse variation along both
PC1 and PC2 (Figure 4). Overall, the ordination suggests
that there are various “cave-type” morphologies in con-
trast to a more cohesive “surface-type” morphology. This
observation is consistent with the results of previous
studies that have attempted to assess species diversity
within central Texas Eurycea using primarily morpho-
logical data (for review, see [10,20]).
The pattern of reduced variation in morphology of

surface-dwelling salamanders relative to cave-dwelling
populations may result from stronger stabilizing selec-
tion, which tends to reduce phenotypic variation. An ob-
vious difference in selection pressure between cave and
surface habitats is predation; salamander predators such
as fishes, aquatic insects and crayfishes are mostly absent
from caves in central Texas, but can be abundant on the
surface (personal observations). Consistent with this
idea, the diffuse variation exhibited by cave-dwelling sal-
amanders may result from the relaxation of selection for
traits that are important on the surface, and in particular
those traits critical for evading predation. Our morpho-
logical data indicate asymmetric migration between hab-
itats because surface forms are more frequently found in
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caves than vice versa. This observation may reflect low
survivorship of troglomorphic salamanders that are
flushed to the surface and temporary migration of sur-
face populations due to periodic drying of the surface
habitat [49]. However, the frequent parallel (sensu [17],
given the close relationships) evolution of troglomorphic
traits (see below) suggests that directional selection may
be operating on cave-associated morphologies. For ex-
ample, eye development and maintenance may be meta-
bolically costly, and therefore selected against in
perpetually dark environments [4,50]. Similarly, eye de-
generation may arise through pleiotropic enhancement
of other sensory organs [51]. Moreover, mechanosensory
detection may be enhanced by changes in head and body
shape, for example to reduce swimming noise or support
larger numbers of superficial neuromasts (e.g., in
amblyopsid fishes [52]). Extensive variation in morph-
ology across different cave systems may result from dif-
ferences in the following: (1) selection regimes, (2) time
since invasion into various cave systems, (3) spatial ex-
tents and connectivity of caves (which may influence the
dependence of some population segments on cave habi-
tats), (4) habitat stability, and (5) frequencies of genetic
admixture with surface populations and associated cave
populations.
Most of the major mitochondrial clades recov-

ered from our phylogeographic analyses include both
cave and surface populations (Figure 1). Furthermore,
mtDNA-based divergences between cave and surface
populations in the eastern Blepsimolge are consistently
small. These patterns, along with the overall low genetic
diversity within the E. neotenes complex, indicate that
troglomorphism arose rapidly and independently in the
various cave populations (contra previous views, e.g.,
[22] re: E. tridentifera; populations assigned to this spe-
cies do not form a well-differentiated, monophyletic
group based on mtDNA sequence data). When considering
mtDNA data alone, we cannot rule out the possibility that
troglomorphic traits are maintained despite on-going gene
flow from surface populations. Overall, this scenario seems
most likely given that the phylogeographic structure reflects
dynamic hydrogeological systems that connect subterra-
nean and surface habitats, and that dispersal of surface
forms is largely dependent on subterranean corridors.
Perhaps the most intriguing pattern recovered from our

analysis of morphological data is the existence of two
discrete groups separating primarily along PC3, mostly
in association with PC1, but to a lesser extent with
PC2 (Figure 5). These groups do not correspond to
phylogeographic structure, previously established tax-
onomy, geography, or whether populations inhabit subter-
ranean or surface habitats. In fact, individual localities,
whether they are cave or surface sites, have individuals
that group with one or the other cluster, or in both
discrete clusters (Figure 5). Overall, these patterns indicate
that the two morphological groups recovered are not
influenced by geographic proximity or population-level
genetic divergence. The three variables that weigh most
heavily on PC3 are AG, SL, and ED (only AG and SL have
negative factor loadings for this component), traits associ-
ated with morphological differences between surface and
cave forms (Table 2). However, because PC2 clearly repre-
sents a surface-to-cave morphology gradient, the variation
along PC3 that is separating specimens must be residual
uncorrelated variation in these traits. Thus, a major aspect
of the variation encompassed by PC3 seems to include re-
duction in eye diameter without concomitant reduction in
trunk length, or vice-versa. The more distinct separation
of these two groups along PC1 rather than PC2 indicates
that scaling relationships are also involved in creating the
pattern of group separation.
At least two factors may result in segregation of morpho-

logical variation into groups that do not correspond to geo-
graphic variation or genetic divergence. First, sexual
dimorphism could generate this pattern, and in most cases
the sexes of specimens measured could not reliably be de-
termined. However, given that sexual differences in mor-
phometric variables usually diverge with ontogeny from a
common starting point [53,54], morphological dispersion
based on such differences should not be discontinuous. An-
other possibility is developmental plasticity, which we con-
sider to be the most plausible explanation for these
groupings based on the limited data available. Developmen-
tal plasticity may operate through two mechanisms: (1) a
threshold response to environmental stimuli whereby a de-
velopmental switch produces alternative forms (i.e., a devel-
opmental polyphenism), or (2) somatic or developmental
selection, whereby large numbers of variants are produced
and some variants are selectively preserved while others are
eliminated [55]. The most important trait structuring vari-
ation along PC3 is trunk length, as indicated by similar cor-
relation structure of AG and SL variables (although eye
diameter does contribute somewhat as well). Trunk length
is correlated with number of vertebral elements, which is
determined by periodic somite formation in embryogenesis
due to a molecular oscillator (i.e., the “segmentation clock”)
[56,57]. Thus, plasticity can modify vertebral numbers by
randomly adjusting rate parameters of the segmentation
clock [58]. However, whether variation in the number of
trunk elements has contributed to group separation re-
mains unknown.
Plasticity itself is subject to selection, and the degree

of plasticity in a trait is predicted to correlate with the
amount of environmental variation to which the trait re-
sponds [55]. This facet of plasticity is important because
the distinction between cave and surface habitats as they
relate to salamander populations in central Texas is
artificial in many cases. Salamanders from surface
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populations may spend considerable time in subterra-
nean refugia, particularly when periods of drought cause
surface springs to go dry [49]. Many populations rely on
spring systems that are spatially heterogeneous in total
available habitat both above and below ground. Further-
more, surface populations may depend more on intersti-
tial groundwater than the open water column, and ease
of movement through interstitial cavities may be
influenced by features such as trunk length. Overall, the
extreme heterogeneity and structural complexity of karst
habitats may select for plasticity in traits such as
somitogenesis and eye development, and somatic
selection of variants may result in the discordant mor-
phological patterns observed at the local scale. Develop-
mental plasticity is also consistent with apparently rapid
shifts in morphology between surface and cave popula-
tions, and the maintenance of different phenotypes des-
pite the homogenizing influence of periodic gene flow.
We cannot rule out other environmental influences (e.g.,
clutch effects [59]), but here the morphological extremes
appear highly correlated with primary use of cave versus
surface habitat.

Taxonomic implications
We do not wish to provide a formal taxonomic treat-
ment here (and thus, refrain from proposing taxonomic
changes), but we offer comments on current species des-
ignations within the E. neotenes complex. Eurycea
tridentifera Mitchell and Reddell [14] exhibits the most
extreme cave-associated morphological features, which
have long served as the basis for its taxonomic recogni-
tion [10,14,18,22,60,61]. The prevailing view was that
this species represented a single lineage that independ-
ently evolved cave-associated morphological traits simi-
lar to those of E. rathbuni [17]. Allozyme frequency data
also weakly supported its distinctiveness, although there
were no fixed differences (in the three populations ex-
amined; [10]). Our analysis of multiple populations with
various degrees of troglomorphism (including many
more individuals assigned to E. tridentifera and previ-
ously unassigned, nearby populations whose members
exhibit tridentifera-like morphologies) challenges this
view. Populations formally assigned to E. tridentifera
occur within the LT clade and are not distinct from
other cave and surface populations in that group
according to mtDNA sequence data (Figure 1). Salaman-
ders from Preserve Cave are morphologically similar to
those assigned to E. tridentifera (Figure 5), yet fall within
the BGP clade, while the single tridentifera-like speci-
men from Hector Hole is part of the N clade (Figures 1
and 3). Eurycea tridentifera appears to be composed of
populations closely related to surface forms that have
evolved extreme troglomorphism independently (Figures 1,
3 and 4), and may not warrant recognition as a distinct
species. Chippindale et al. [10] resurrected E. latitans Smith
and Potter [62] from synonymy under E. neotenes, but
regarded it as a “catch-all” group of problematic taxonomic
status. Our results support this view, showing extensive
mitochondrial polyphyly for populations assigned to this
species (Figure 1). Sweet [22] regarded occurrence of sala-
manders with morphologies "intermediate" between those
of surface and cave forms at Cascade Caverns (the type lo-
cality for E. latitans) as evidence of hybridization between
E. tridentifera and E. neotenes, but we find no indication of
this based on mtDNA, nor was this supported by allozyme
data [10]. Thus, the status of E. latitans as a distinct species
also is highly questionable. Chippindale et al. [10] tenta-
tively recognized E. pterophila Burger, Smith and Potter
[63] (which had been synonymized under E. neotenes by
Sweet [19]) on the basis of similar allozyme frequencies
(but no diagnostic alleles) and a geographic distribution ex-
clusive to the Blanco River drainage [10]. While our results
do show genetic affinities among some populations within
the broader Blanco River watershed (e.g., clade BP2), other
Blanco populations are more closely related to those within
the Guadalupe watershed (including Rebecca Creek Spring,
previously assigned to E. latitans [10]). This observation is
also consistent with a population genetic study that docu-
mented evidence of genetic isolation among several popula-
tions of E. pterophila [43]. Clades containing populations
assigned to E. pterophila form a polytomy with the LT clade
(Figure 1) and divergence between these groups is low. Fi-
nally, populations assigned to E. neotenes Bishop and
Wright [40], plus other cave and surface members of the N
clade, form a largely cohesive group geographically.
The E. neotenes complex exhibits discordance with

previously delimited species boundaries, contains a
morphologically-based species unsupported by mtDNA
evidence (E. tridentifera) and includes potentially cryptic
species (e.g., White Springs). Extremely low genetic di-
vergence between subterranean and surface populations
is evident, and morphological groups do not correspond
to clear geographic or phylogenetic patterns. Although
the morphological variability of this group may have
resulted in over-split taxonomy, there has also been lack
of recognition of genetically divergent but morphologic-
ally similar species of Texas Eurycea (most notably those
with “surface” morphologies, e.g., E. chisholmensis, E.
naufragia, E. tonkawae [10] and E. sosorum [45]). We
recognize that consistent morphological differences be-
tween populations may also be indicative of genomic di-
vergence and we cannot rule out the possibility that this
divergence may have occurred faster than mtDNA
lineage sorting. Additionally, incongruence between spe-
cies trees, mtDNA and nuclear gene trees has been doc-
umented in numerous cases [64-66], highlighting the
potential pitfalls of relying solely on mitochondrial se-
quence data for taxonomic assessment. However, our
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results are not inconsistent with nuclear data presented
in previous studies [10,43].

Cave colonization, adaptation and speciation
Speciation in cave faunas has often been explained by
two contrasting models: the ‘climate-relict’ and the
‘adaptive shift’ hypotheses. The distinction between these
two models lies in whether vicariance or divergent selec-
tion pressures drive speciation [67-69]. Under the
climate-relict hypothesis, speciation occurs when surface
and cave populations are separated after climatic
changes result in prolonged geographic isolation [70]. In
this scenario, surface populations are extirpated, gene
flow to cave populations is eliminated, and populations
speciate in allopatry. The ‘adaptive-shift’ hypothesis
explains speciation as a result of ecological niche
separation [68,69]. In this case, ancestral “surface” popu-
lations are not isolated geographically from populations
exploiting the novel cave niche [68,71]. Instead, natural
selection drives differentiation and eventually severs
gene flow between the incipient surface and cave sibling
species [69].
The occurrence of phylogenetically-nested troglomorphic

populations of spring salamanders (genus Gyrinophilus)
within the geographic ranges of more widespread surface
forms has been invoked as evidence for speciation with
gene flow, and thus, supportive of an adaptive-shift hypoth-
esis [72]. Based on our results, the adaptive-shift hypothesis
is a better explanation of diversification and cave invasion
(but not necessarily speciation) in eastern Blepsimolge than
the climate-relict hypothesis because of (1) low divergence
Figure 6 Cave (top) and surface (bottom) morphs of Eurycea from Ho
individuals were observed only meters apart within the same cave stream:
morph was observed approximately 20 m from the entrance.
between spring and cave populations and (2) genetically
similar (or indistinct) cave and spring forms occurring in
sympatry. But how are disparate surface and cave morph-
ologies maintained in spite of ecological overlap and appar-
ent gene flow?
Shared mtDNA haplotypes between surface and cave

populations can result from incomplete lineage sorting,
causing a lag between the process of lineage splitting and
our ability to detect it [73]. However, there are several rea-
sons why genetic admixture between surface and subterra-
nean forms within the E. neotenes complex is likely. For
example, populations of spring-dwelling central Texas
Eurycea are dependent upon subterranean habitat [13], ei-
ther for refuge from drought [49] or reproduction [74].
Additionally, several cave populations harbor a range of
troglomorphic and surface forms (Figures 4d and 6) that
share mitochondrial haplotypes. Thus, there is potential for
extensive overlap between these niches, and our results
suggest that sympatric surface and subterranean forms
within the E. neotenes complex do not maintain isolation
(although Sweet regarded this pattern as evidence for as-
sortative mating among similar forms [22]). Whether
troglomorphism arises during brief periods of isolation or
arises in sympatry, the persistence of divergent morpho-
logical forms in genetically admixed populations may be
due to strong selection for cave phenotypes [6], develop-
mental plasticity, or both.

Conclusions
The mt-gene phylogeny of eastern Blepsimolge reveals
patterns of intermittent isolation and gene flow, a
ney Creek Cave (type locality for Eurycea tridentifera). These
the surface morph was encountered 5 m into the cave while the cave
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reflection of the dynamic nature of karst aquifers. Shal-
low genetic divergences among several recognized spe-
cies suggest that the E. neotenes complex may have been
over-split by early workers due to an emphasis on
phenotypic divergence, particularly between cave and
surface populations. This is in contrast to considerable
cryptic species diversity among spring-dwelling popula-
tions of central Texas Eurycea owing to morphological
conservatism among spring-dwellers. Evidence of genetic
exchange and nested relationships across morphologic-
ally disparate cave and spring forms within the E.
neotenes complex suggests that cave invasion in this
group was recent and many troglomorphic morphologies
(of individuals typically assigned to E. tridentifera) arose
independently. These patterns are consistent with an
adaptive-shift hypothesis of diversification. In many
cases cave and surface forms do not appear to be
genetically isolated, and even occur in microsympatry
(Figure 6), suggesting that troglomorphism is maintained
by strong selection and/or developmental plasticity.
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