

OUR MISSION

Inspiring research and leadership that ensures clean, abundant water for the environment and all humanity.

Texas Stream Team

- Citizen Scientist Water Quality Monitoring
- Water Resource Education

To promote:

- Water Quality Education
- Non-point Source Pollution Reduction
- Watershed Awareness
- Environmental Stewardship

Texas Stream Team Citizen Science Programs

✓ Standard Core Water Quality Monitoring

Probe Core Water Quality Monitoring

✓ Riparian Evaluation

Macroinvertebrate Bioassessment

Water Demand Projections (acre-ft per year)

The Drought of Record

Texas, Precipitation, January-December

2011 Drought Impacts

\$7.62 Billion in Agricultural Losses

115,000 Jobs

2500 Homes Burned

No End in Sight

U.S. Drought Monitor **Texas**

October 4, 2011

(Released Thursday, Oct. 6, 2011) Valid 7 a.m. EST

Intensity.

D0 Abnomally Dry

D1 Moderate Drought

D2 Severe Drought

D3 Extreme Drought D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Richard Tinker CPC/NOAA/NWS/NCEP

http://droughtmonitor.unl.edu/

Things Have Improved

 In 2015, the most severe drought conditions in Texas receded

 Reservoir storage in Texas as a whole average 86% full

Drought Monitor map of Texas for the week ending 2018-02-20

Drought Monitor classes are cumulative - if a region is in D2, it is also in D1 and D0. The statistics above represent these cumulative values. Also, note that class D0 - Abnormally Dry is not technically drought and represents a transition into or out of drought conditions.

All of Our
Watersheds and
Recharge Zones
Are On
Private Land

direct recharge

Texas
loses more land
from rural uses
each year
than any other
state

Water Conservation Stamp issued in 1960

Texas needs environmental flows

- Only ten percent of water rights consider environmental flows
- Senate Bill 3 does not address flows for historic water rights

DETERMINE RELATIONSHIP BETWEEN INFLOWS AND SALINITY

ASSESS THE RELIABILITY OF THE WATER RIGHT

ASSESS THE ECOLOGICAL BENEFITS OF CANDIDATE WATER RIGHTS

Surface Water and Groundwater Management

Water Code

- State water
 - Rivers, streams, lakes, bays, storm water, and floodwater
 - Includes "underflow"
- Groundwater
 - "...water percolating below the surface of the earth."

KEY RESEARCH TAKE-AWAYS (2014-2017)

- ~23% of annual inflow to Lake Travis comes from Pedernales River with half of this inflow originating from groundwater.
- The river is in relatively good shape.
- Land cover has not changed significantly.
- The Pedernales acts as a groundwater catchment in Southwestern Travis County and Northern Hays County.

N3 Carancahua N2 EXPERIMENTAL DESIGN Matagorda N50 Gulf 8162600 Mexico Elmaton Long Mott 8188810 Tivoli N5 Tres Palacios Bay Caranchua Bay Port Alto

5 Stations in 3 Bays, 12 monthly sampling periods/one year

FRESHWATER INFLOW & WATER QUALITY

"Domino Theory" Source: Montagna et al. 2013

- Many different biological responses within estuaries are affected by water quality, which is effected by inflow
- Inflow drives water quality, which drives ecological health
- The responses can be summarized with multivariate statistics

RELATIONSHIPS AMONG WATER QUALITY VARIABLES

Principal components analysis (PCA) variable loads for hydrographic characteristics using PC1 and PC2, stations N1-N5, from September 2015 to September 2016.

- The first two principal components
 (PC1 and PC2) explained 30% and
 20% respectively for a total of 50% of
 the variation in hydrographic
 variables
- The PC1 axis represents a Freshwater Inflow (FWI) index, where a decrease in salinity (or increase in freshwater inflow) is associated with increased nutrient concentrations

WATER QUALITY RESPONSE TO DISCHARGE

Pearson Correlation Coefficients Prob > r under H0: Rho=0		
Salinity (PSU)	-0.58208	
	<.0001	
Dissolved Oxygen (mg/L)	0.0982	
	0.4364	
рН	-0.05358	
	0.6716	
Total Sygnandad Salida (ma/L)	-0.07815	
Total Suspended Solids (mg/L)	0.5361	
Particulate Organic Matter (mg/L)	-0.03466	
	0.784	
Phosphate (μmol/L)	0.44101	
	0.0002	
Silicate (µmol/L)	0.49693	
	<.0001	
Nitrate + Nitrite (μmol/L)	0.44746	
	0.0002	
Ammonium (µmol/L)	0.1064	
	0.3989	
Chlorophyll-a (μg/L)	0.04201	
	0.7397	

Pearson correlation coefficients and p values for discharge versus water quality variables

Linear regression on flow index (PC1 sample scores) and log discharge (ac-ft/mo)

FLOW REQUIRED TO MAINTAIN WATER QUALITY

Percent change estimate in flow index (PC1) values and corresponding estimates for flow (ac-ft/mo) at Tres-Palacios Bay, Carancahua Bay, and San Antonio Bay

	Corresponding flow (ac-ft/mo)		
- -	Tres-Palacios Bay		
Percent Change	Estimate	90% CI	
0%	-1	(-1, 0)	
5%	954	(554, 1355)	
10%	1909	(1109, 2710)	
15%	2864	(1664, 4064)	
20%	3819	(2220, 5419)	
25%	4774	(2775, 6774)	
30%	5729	(3330, 8128)	
	Carancahua Bay		
Percent Change	Estimate	90% CI	
0%	-1	(2,0)	
5%	448	(-83, 981)	
10%	896	(-168, 1963)	
15%	1344	(-253, 2944)	
20%	1792	(-338, 3926)	
25%	2241	(-423, 4907)	
30%	2689	(-508, 5889)	
	San Antonio Bay		
Percent Change	Estimate	90% CI	
0%	0	(0,0)	
5%	5894	(4379, 7409)	
10%	11788	(8759, 14818)	
15%	17683	(13138, 22227)	
20%	23577	(17518, 29636)	

Percent change estimate in flow index (PC1) values and corresponding estimates for flow (ac-ft/mo)

MANAGEMENT IMPLICATIONS SIGNIFICANCE OF FINDINGS

- Development of the percent-of-flow-index approach provides a framework for analyzing how specific amounts of diverted flow diverted may alter water quality conditions in specific bays
- It is a generic approach
- We can use this approach to determine the amount of flows that may be needed for diversions to maintain or restore water quality conditions