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Executive Summary:  
The invasive grass Arundo donax (hereafter Arundo) is a large stature nuisance plant species that 
is currently spreading throughout Texas, mainly around waterways. Where it establishes it can 
pose a significant threat to the health of riversides and stream channels by out-competing native 
vegetation, increasing erosion, altering flood control potential and fire regimes, and reducing 
wildlife habitat quality. There is a substantial need in Texas to map locations of successful 
Arundo invasion, especially in NFCAs, to better establish management and restoration priorities. 
There are currently large geographic areas within NFCAs that are not monitored on the ground 
for the presence of Arundo due to the time investment needed for such a large undertaking. Here 
we attempted a statewide detection and inventory project of current and past Arundo invasion in 
Native Fish Conservation Areas (NFCAs). We mapped areas of established populations and 
detect rates of expansion using remote sensing techniques. Our project developed methods that 
will allow for detection through remote sensing products on large geographic scales.  
 
Our project had three main objectives: 
Objective 1 – Inventory and document Arundo spectral biosignatures, establish statistical 
linkages between multispectral sUAS and Sentinel-2 imagery, develop a model to 
identify Arundo using satellite imagery, and map Arundo in two NFCAs of known 
occurrence.  

• Initial field-based accuracy assessments yielded an overall classification accuracy of 71% 
and a kappa value of 0.46 within training NFCAs of the Guadalupe and San Antonio 
Rivers (GUAD) and the Southern Edwards Plateau (SEP).  

• The overall accuracy indicates that 71% of pixels within this training area were correctly 
classified as Arundo or non-Arundo vegetation. The Kappa coefficient of agreement 
value of 0.46 indicates that the classification has moderate agreement compared to 
chance alone.   

• Arundo was detected most frequently along urban or suburban areas with intersecting 
river systems, while less developed areas had fewer classified pixels of Arundo. 

• Future iterations of the predictive mapping methodology may be improved by the 
incorporation of more fine spatial resolution imagery and the consideration of regionally 
based training imagery.  

  
Objective 2 - The goal was to use Sentinel-2 remote sensing data to map Arundo presence and 
proportion in all NFCAs identified as having potential for infestations and determine rates of 
expansion from 2015 - present. 

• Metrics of accuracy validation for individual or paired NFCAs other than the SEP and 
GUAD were suboptimal despite several iterations of CART rule adjustments. We 
attribute this to high phenotypic variability of Arundo and the use of relatively coarse 
imagery resolution at 10 x 10 m pixels. Future remote sensing-based projects looking to 
differentiate vegetation species based on spectral responses would benefit from 
purchasing of higher resolution imagery. 

• SEP expansion from 2015 – 2018 had a 0.028% gain per year for Arundo cover, though 
this increased between 2018 – 2021 to a 0.54% yearly gain. As this area was exiting the 
drought of 2015, this gain was anticipated as Arundo is highly reliant on freshwater 
availability.  
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• The overall expansion rate of 0.284% per year within SEP indicates class coverage of 
Arundo increasing.  

• GUAD expansion from 2015 – 2018, on the other hand, experienced a 0.0000067% loss 
per year of Arundo cover, shifting to a gain of 0.00033% per year between 2018 -2021. 
This loss of Arundo is likely from TPWD management efforts rather than any 
environmental factors or decreasing Arundo fitness. 

• SEP patch numbers increase quickly and consistently, while GUAD patch numbers 
decreased sharply between 2015 and 2018.  

• GUAD average patch area showed an initial decrease followed by a partial regrowth. 
This pattern suggests a die back of Arundo across GUAD that was followed by additional 
growth in the following years. 
  

Objective 3 –Establish relationship between landscape features and Arundo dominance and 
spread and identify areas of high management priority. 

• Due to challenges in objectives 1 and 2 this objective was not able to be completed. In 
addition, the poor accuracy of the majority of the eastern and western NFCAs made this 
analysis non-productive as any landscape feature associations found would likely not be 
reliable. 

 
This project provides framework for continued remote sensing-based detection methods of a 
conspicuous invasive species of significant habitat management concern within Texas NFCAs. 
Though there were issues with model accuracy, this is the first attempt at creating fully remote 
sensing-based inventory of Arundo along with evaluation of expansion rates within Central 
Texas NFCAs. While we addressed complications encountered and sources of expected error in 
the report, this project does supplement knowledge gaps regarding expansion characteristics of 
Arundo within Central Texas. It is our hope that the methods and recommendations included in 
this report will be incorporated into TPWD’s ongoing Arundo management efforts within and 
beyond the SEP and GUAD NFCAs. Continued mapping of the Arundo using higher resolution 
imagery than used in this project will provide agencies with a more complete picture of how 
widespread invasions have become within NFCAs, along with how the invasion has spread in 
this 7-year time span. A more robust analysis may stem from this methodology for a more 
complete consideration of influential landscape features contributing to past and future 
infestations. 
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Introduction:  

Arundo donax (hereafter Arundo) is a perennial nonindigenous grass that has been 
introduced and established in the southern part of the continental United States as well as 
Hawaii, Puerto Rico, and the Virgin Islands (USDA 2020). Arundo is hypothesized to have 
originated in Asia and diffused through the Mediterranean to North America in the early 1800s 
(Ahmad et al. 2008, Hardion et al. 2014). Genetic analysis of individuals in North America 
revealed that all sampled Arundo were genetically identical with the exception of one sample 
found in Texas that exhibited a single mutation (Ahmad et al. 2008). There is evidence that 
Arundo invasions in northern Mexico and southwestern United States are from a single lineage 
(Tarin et al. 2013). Further investigation into the reproductive mechanisms of Arundo shows that 
the North American invader is sterile and incapable of reproducing via seed. Post-meiotic 
mutations of the ovule and pollen were found to render the plant infertile (Mariani et al. 2010). 
The spread of Arundo through North America can be attributed to asexual vegetative 
reproduction via layering, rhizomes, and fragmentation (Decruyenaere and Holt 2001, Boland 
2006, Ahmad et al. 2008). The current hypothesis explaining the spread of Arundo is that 
rhizome and stem fragments are dispersed through flood events that carry propagules 
downstream, allowing them to establish in areas that have been disturbed (Bell 1997, Mariani et 
al. 2010). Alternative hypotheses propose that flooding may not be the primary driver of Arundo 
spread attributing the expansion of the species to bulldozing and layering (Boland 2006, Boland 
2008). 

The fast growth of Arundo along with its lack of natural enemies has made the species an 
aggressive and successful invader in the southern United States. Arundo can grow up to 10 
meters tall, forming dense monotypic stands that are associated with lower species richness in 
stream banks and floodplains and has been linked to decreased streamflow in the Nueces River 
(Cushman and Gaffney 2010, Jain et al. 2015).  The height of this species confers a competitive 
advantage over shorter statured native species. The species is typically found along disturbed 
stream beds, lakes, and other wet areas and can grow 30-70 cm per week under ideal conditions 
(Perdue 1958, Bell 1997). The fast growth rate and height of Arundo allows it to displace native 
species, especially under high nitrogen and ideal soil moisture regimes.  

The success of Arundo poses a problem to native arthropod communities by changing the 
vegetation structure of native habitats. The exotic cattle tick Rhipicephalus (Boophilus ) spp. was 
shown to be more successful under the abiotic and biotic conditions created by stands of Arundo 
(Racelis et al. 2012). Invasion by large statured invasive grasses, such as Arundo, are known to 
alter the structure of vegetation and reduce arthropod diversity, which in turn leads to decreased 
avian diversity (Herrera and Dudley 2003, Kisner 2004). There is a lack of evidence that Arundo 
acts as a significant food source or habitat for native wildlife (Bell 1997). 

Research on biological control of Arundo has been conducted using Rhizaspidiotus 
donacis, an armored scale, and Tetramesa romana, a stem-galling wasp, frequently found within 
the native range of Arundo (Moore et al. 2010) as well as being present in Texas. These 
biological control agents have thus far had negative impacts on Arundo populations in an 
experimental setting, decreasing biomass by 22-32% (Goolsby et al. 2016). Even with biological 
control and species management programs in place Arundo continues to invade susceptible 
riparian ecosystems throughout Texas.  
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Factors influencing the success of Arundo 
            Past studies have examined some of the biotic and abiotic factors that can influence 
Arundo’s successful establishment and expansion. As mentioned above, while current 
hypotheses explaining the spread of Arundo focus on the dispersal of propagules downstream by 
flood events (Bell 1997, Mariani et al. 2010), it is very likely that a suite of factors influence the 
successful colonization and spread of Arundo. 

Arundo can be found in a wide range of soils from dense clays to loose sand and is 
tolerant of high salinity conditions (Perdue 1958, DiMola et al. 2018). Though capable of 
withstanding extreme drought and excessive soil moisture, Arundo seems to be most successful 
in areas with well-drained soil and ample moisture (Perdue 1958). The growth of Arundo has 
been found to be closely correlated to soil moisture (Quinn et al. 2008, Nackley et al. 2014). In a 
study performed by Quinn (2008), it was found that Arundo exhibited a positive response to soil 
moisture and disturbance. In a greenhouse study of the abiotic factors associated with Arundo 
performance (e.g., growth, photosynthetic rate, biomass production), Herod and Martina (2023) 
found that soil moisture and light strongly interacted to increase growth in high light and soil 
moisture conditions. As is the case with many competitive species, Arundo thrives in disturbed 
areas and is tolerant of conditions that may be detrimental to native species.  

Though able to subsist in infertile conditions, Arundo appears to perform the best in high 
nitrogen conditions (Perdue 1958). The plant seems to favor nitrogen delivered as NH4+ or NH4+

 

NO3
-, as opposed to solely NO3

- (Tho et al. 2017).  Under low nitrogen regimes, Arundo tends to 
exhibit greater distance between buds on the rhizome and more extensive underground structures 
(Perdue 1958).  As is the case with many invasive species, Arundo shows higher biomass and 
spread in response to increased nitrogen (Quinn et al. 2007, Nackley et al. 2017, Tho et al. 2017). 
Studies indicate that fast-growing invasive species, such as Arundo, may gain a competitive 
advantage over native species when N is increased. It is suggested that this may lead to a positive 
feedback loop in which invasive species are able to, through faster growth and larger size, 
outcompete native species for resources, mainly light (Mangla et al. 2011). This idea is 
supported by the success of many large statured wetland species grown in high nitrogen 
conditions, such as Phragmites australis (Martina et al. 2016), Typha domingensis, and Phalaris 
arundinacea (Green and Galatowitsch 2001, Minchinton and Bertness 2003, Escutia-Lara et al. 
2007, Martina and von Ende 2012). However, Herod and Martina (2023) found that while high N 
and P did significantly influence internal resource allocation of Arundo, their effects on growth 
and biomass production were dwarfed by the significant effects of soil moisture and light. 

Though the presence of established native communities and competitors has not been 
studied at length in Arundo, there is evidence that Arundo is mostly unaffected by native 
community composition or the presence of a competitor. In a study conducted by Quinn (2007), 
Arundo biomass was not significantly affected by competition with Schoenoplectus pungens 
though tiller production was slightly reduced. The results of this study indicate that nitrogen 
enrichment may be able to make up for the negative effects of competition in Arundo 
establishment.  A separate study revealed that the establishment success of Arundo was 
unaffected by the composition of native communities consisting of Schoenoplectus pungens, 
Baccharis salicifolia, and Salix gooddingii. When grown with other weedy species, Arundo 
initially exhibited lower values for performance-related traits; however, Arundo appeared to 
become more competitive during the second growing season as it established (Curt et al. 2017).  



FINAL REPORT 

Page 6 of 30 
 

  
 
Key information gaps 

Given the characteristics of Arundo growth combined with its lack of natural enemies in 
North America and extreme tolerance to disturbance, the species has become a significant threat 
to riparian habitats throughout southern United States, and especially in Texas. Management 
efforts using chemical and mechanical methods have all been used in the field in an effort to 
control Arundo, while biocontrol has been researched (Bell 1997, Moore et al. 2010). 
Management of Arundo can take multiple years, and the success of any given method of control 
is largely dependent upon knowing the location of infestations, continued treatment, and the 
characteristics of the ecosystem being managed.  

The Texas Native Fish Conservation Areas Network is an integrated and holistic 
approach to the conservation of freshwater systems (springs, creeks, rivers, and watersheds) 
throughout Texas. The main function of the NFCAs is the protection of the over 190 species of 
native freshwater fishes found in Texas, with almost 50% considered imperiled. The threat to 
these freshwater systems mainly comes from anthropogenically-induced disturbance, including 
the spread of many invasive species, including Arundo, which can greatly alter the river/stream 
ecosystem in a similar way to Phragmites australis, a comparable species known to negatively 
influence native fish habitats (Lambert et al 2010, Able and Ragan 2003). There is a gap in our 
knowledge of where successful populations of Arundo are located throughout the NFCAs, how 
fast Arundo populations spread, and what landscape factors (such as proximity to human 
infrastructure or other Arundo populations) influence the success and management of this 
species. 

Our research project addressed these key information gaps by mapping areas of 
established populations and detecting rates of expansion using remote sensing techniques. This 
project focused on the following TPWD priority aquatic invasive species research topics: 1) 
Identification of geographic areas and/or habitats most at risk of invasion and impacts in Texas 
and 2) Determine the geographic distribution and dispersal of aquatic invasive species in Texas. 
In addition, by analyzing the rate of invasion through time and connecting expansion rates with 
causal landscape features, we addressed a third priority topic “Ecology and population dynamics 
of problematic aquatic invasive species in Texas, with a focus on factors affecting invasion 
success or management implications”. 
 
Project Objectives:  
  
Objective 1 – Inventory and document Arundo spectral biosignatures, establish statistical 
linkages between multispectral sUAS and Sentinel-2 imagery, develop a model to identify 
Arundo using satellite imagery, and map Arundo in two NFCAs of known occurrence.  
 
Objective 2 - Use Sentinel-2 remote sensing data to map Arundo presence and proportion in all 
NFCAs identified as having potential for infestations and determine rates of expansion from 
2015 - present.  
  
Objective 3 – Establish relationship between landscape features and Arundo dominance and 
spread and identify areas of high management priority.  
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Methods:  

A current challenge with identification of Arundo throughout Texas is that existing 
methods rely on aerial surveys and boots-on-the ground mapping to build and update existing 
inventories; however, this process is expensive and time consuming. Vegetation, like all surface 
materials, has a specific electromagnetic (EM) response to incoming solar radiation. For 
vegetation, the relationship between chlorophyll absorption of red wavelengths and strong 
reflectance of near-infrared wavelengths within the intracellular air spaces of plants provides a 
key indicator of plant presence growth, photosynthetic capacity, vigor, etc. Additionally, these 
surface-energy interactions in the red and near-infrared region of the EM spectrum facilitate 
mapping of individual species as well as vegetation community composition as different plant 
species have different spectral responses. A key wavelength region of interest in vegetation 
studies is termed the red-edge. The red-edge is the region in the EM spectrum where a sharp 
increase in NIR leaf reflectance occurs and is considered a spectroscopic biosignature of 
vegetation. Many aerial and satellite sensors can be used to approximate the magnitude of NIR 
leaf reflectance, but few sensors actually measure red-edge reflectance.  

Although small unmanned aerial systems (sUAS) have been increasingly used to map 
vegetation, the sensors often record basic red, green, and blue (RGB) wavelengths and are not 
radiometrically calibrated such that the spectral response recorded by the sensors can be 
transferrable to other sites or different collection days. The sUAS used for this project has six 
radiometrically calibrated individual sensors; one for RBG imaging and five monochromatic 
sensors for multispectral imaging. Of keen importance are the red, near-infrared, and red-edge 
sensors on-board the multispectral system and that they correspond to the red, near-infrared, and 
red-edge regions also measured by the Sentinel-2 satellite system. Sentinel-2 is a two-
constellation satellite operated by the European Space Agency to acquire repeat imagery every 2-
5 days at 10-, 20-, and 60-meter spatial resolutions (ground sample distances). We used the 
multispectral sUAS (DJI Phantom 4 Multispectral) to scale the spectral response of Arundo to 
Sentinel-2 imagery for the purposes of identifying the spectral relationships between the two 
sensors and then mapping Arundo in un-inventoried areas using classification and regression tree 
predictive models. 
 
OBJECTIVE 1: Creation of 2022 Arundo Inventory 
Field Collections 
 To create the 2022 predictive model, we first gathered high-resolution spectral imagery 
of known Arundo populations. Initial imagery collection of Arundo training points was 
performed with a DJI Phantom 4 sUAS equipped with a multispectral camera suited for 
capturing spectral responses lending to computation of several Spectral Vegetation Indices 
(SVIs). Flight locations had a tiered, targeted approach with the following requirements: (1) 
being within one of the targeted training NFCAs, (2) having known Arundo infestations, and (3) 
being accessible for safe sUAS launch, flight, and landing. Based on these criteria, we selected 
the Guadalupe and San Antonio Rivers (GUAD), as well as the Southern Edwards Plateau (SEP) 
NFCAs for training data collection (Figure 1). Focal rivers included the Guadalupe, Blanco, and 
Medina Rivers where TPWD data layers from the Arundo management oriented Healthy Creeks 
Initiative had documented Arundo locations via aerial survey (Figure 1). 
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Figure 1: Map examples of the study area. 3(a) Map of Native Fish Conservation Areas of Texas, sourced from the 
Native Fish Conservation Network Conservation Planning Map. 3(b) Training NFCAs used for initial sUAS 

imagery collection and model training. Guadalupe & San Antonio Rivers and Southern Edwards Plateau NFCAs 
were selected based on presence of known Arundo infestations. 3(c) Stage 2 NFCAs where developed model was 

applied for Arundo classification based on Sentinel-2 imagery.  3(d) Known Arundo populations (point data) 
selected for initial sUAS imagery collection within Training NFCAs. Data provided by TPWD's Healthy Creek 

Initiative 2019 Survey.  

Safety of launch locations were individually evaluated with consideration of public 
access. When possible, flights were performed between 10:00 am and 11:00 am to best coincide 
with Sentinel-2 overpass. The goal altitude for flights was maintained at 150 m which yielded an 
average spatial resolution of 0.083 m and swath width of 173 m. The sUAS imagery collections 
were targeted for the summer season, when Arundo is flushed green and characteristic 
inflorescences have emerged. These characteristics assisted in visual delineation of Arundo 
canopy cover within the imagery (Figure 2). 

During each flight, the sUAS captured images of reflectance targets so that the data can be 
calibrated to known surface reflectance. Calibrated images were processed in Agisoft Metashape to 
create fully georeferenced digital orthomosaics of each mission. In-situ measurements of Arundo 
were overlain on the orthomosaics to determine Arundo presence and to guide image interpretation 
efforts to identify additional stands not accessible by foot. Stands were manually digitized on-screen 
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and the spectral responses in the red, NIR, and red-edge wavelength regions were recorded for 
analysis.   

 
 
 

 

Figure 2: Examples of an Arundo stand along the Blanco River in San Marcos, Texas. Inflorescences and unique 
shadow casting simplified visual identification, though mixed pixels may complicate a clear species-specific spectral 

response isolation. 

 A total of 31 individual sUAS flights were performed (Table 1). Of these, 20 were 
referenced for the digital delineation of Arundo canopy footprints from June and July 2022 
collections. The 11 flights not used were excluded due to poor flight conditions (e.g., high winds 
or inappropriate sun angles) decreasing the reliability of the imagery. These flights were re-flown 
for improved imagery acquisition. In areas flown more than once, the cleanest sUAS data was 
retained. November 2021 sUAS data along portions of the Blanco River north of San Marcos, 
Texas were used as preliminary training flights to assure correct sUAS operation and post-
processing. Agisoft Metashape was used for mosaicking individual = sUAS images into a larger, 
high-spatial accuracy output. Following this, the mosaicked image was imported to ArcGIS Pro 
for digital delineation of visually identifiable Arundo stands (Figure 3). 
 
Table 1: Summary of completed flights, with general location, dates, and river corridor distance spanned by imagery 

collection (km). *November 2021 preliminary training flights. 

 
 

River Flights Total Flights Used Approx Distance (km) Dates Nearest City

Blanco 15 8 5.44
July 2022 & 

November 2021*
San Marcos

Medina 11 7 4.89 Jun-22 Medina & Bandera
Guadalupe 5 5 3.09 Jun-22 Kerrville



FINAL REPORT 

Page 10 of 30 
 

 
Figure 3: Post-processed sUAS imagery and Arundo delineation example. Snapshot of a June flight from the North 

Prong tributary of the Medina River. 
 

While flights were performed remotely with few restrictions, more complete ground-
truthing community surveys of Arundo stands were often restricted due to property access denial. 
With 93% of Texas’ land area being privately owned, this was an anticipated complication 
(Texas Parks and Wildlife Department, n.d.). When Arundo stands were on publicly accessible 
land or express landowner permission was granted, a Trimble Geo7XH GPS unit was used to 
document the canopy footprint of the stands. Complete community data was collected from 12 
Arundo stands (Table S1). These field data were later referenced during model development to 
verify Arundo and non-Arundo classified pixels. When access was denied by landowners or 
deemed unsafe, the submeter sUAS imagery processed in Agisoft Metashape was instead 
referenced to delineate Arundo canopy footprints. While not incorporated in our analysis due to 
poor sample size (attributed with access restrictions), this species composition data was useful in 
retroactively validating pixel classifications of Arundo and non-Arundo coverage within the 
model. 
 
Imagery Preparation & Comparison to Acquired Sentinel-2 Imagery 
 Sentinel-2 imagery gathered from dates on or near the date of sUAS flights over 
identified Arundo populations was obtained and processed to isolate surface reflectance products. 
Per objective 1 methods, these were late summer dates generally falling around August and 
September. Sentinel-2 imagery was acquired from the Copernicus Access Hub as open-source 
data maintained by the European Space Agency (ESA). We emphasized acquisition of Sentinel-2 
processing Level-2A imagery as these come with surface reflectance values calculated. When 
Level-2A was unavailable, Level-1C products were instead acquired. However, Level-1C is only 
processed to top-of-atmosphere (TOA) reflectance. Since TOA products have not yet been 
corrected for atmospheric constituents and variability (e.g., gases, aerosol presence), additional 
processing was required for these downloads. ESA’s SNAP Desktop was used with the Sen2Cor 
processor to address the required atmospheric corrections and create a more suitable Level-2A 
product with surface reflectance values. 
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 The Sentinel-2 satellite is equipped with a Multispectral Imager calibrated to detect 13 
spectral bands ranging from 10 – 60 m pixel size (Table 2) (European Space Agency, 2015). 
Though Arundo can form hectares of monocultures (Boland, 2006; Mariani et al., 2010), this is 
uncommon in our study region. For this reason, any bands selected for investigation were 
resampled to 10 m using nearest neighbor statistics in ArcGIS Pro. This higher spatial resolution 
should improve the predictive capabilities of our mapped inventory. Bands 4-8 and band 8a were 
initially isolated for investigation as these bands are well documented in the calculation of SVIs 
capable of identifying functional groups or specific species (Vogelmann et al., 1993). 
 

Table 2: Sentinel-2 Spectral Bands. Bands 4-8 and 8a were selected for investigation. Use of these spectral ranges 
for calculations of SVIs are well documented (European Space Agency, 2015; Vogelmann et al., 1993). 

 
 

With imagery acquired, surface reflectance calculated, and bands isolated, imagery 
underwent additional preparatory steps. Due to the significant computing demands that come 
with broad scale imagery classification and model application, we opted to emphasize mainstem 
river corridors within the NFCAs. Application, in this sense, means instructing this model to 
classify individual 10 m pixels of Sentinel-2 imagery across our study area as either “Arundo” or 
“non-Arundo”. In ArcGIS Pro, individual spectral layers were restricted to 200 m buffers of the 
focal rivers to streamline processing and reduce expected errors anticipated from inclusion of 
non-riparian species. All processing layers and bands were projected into the World Geodetic 
System 1984/Universal Transverse Mercator 14N for spatially relevant computation. 

Using known locations of Arundo digitized during sUAS imagery acquisition, Sentinel-
2A clipped bands were stacked and isolated for investigation. Red, NIR, and red-edge responses 
were extracted for the final model approach. SVIs of the training NFCAs were calculated from 
these bands and included the Vegetation Red-Edge Index (Vogelmann et al., 1993), Red-Edge 
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Normalized Difference Vegetation Index (Gitelson & Merzlyak, 1994), and more common 
indices including the Normalized Difference Vegetation Index (Rouse et al., 1974). 
 
Modeling Methods & Accuracy Assessment 

The mapping model algorithm was developed using a Classification and Regression Tree 
(CART) analysis in JMP Pro to determine presence and absence of Arundo in Sentinel-2’s 10 m 
imagery. CART, a decision tree analysis, is a machine learning method used for constructing 
predictive models from known data and is well established in the literature of ecological 
informatics (e.g., De’ath & Fabricius, 2000; Kulkarni & Shrestha, 2017; Moisen, 2008). Single 
input bands and SVIs were isolated from Arundo populations identified by TPWD (Figure 3) and 
served as the main predictors for the CART creation. The final model used Sentinel-2 bands 3 
(Red), 4 (NIR), and NDVI as predictive variables. This model version has a generalized R2 of 
0.76, meaning these variables account for 76% of Arundo’s predictability, and a cross validation 
R2 of 0.66, meaning there’s a 66% agreement between predicted and observed classifications. 

With the CART developed in JMP, a Python script was developed to run the model in 
ArcGIS Pro to apply the CART rules to Sentinel-2 imagery of training NFCAs. Accuracy 
assessment trips were organized based on equalized stratified random sampling of points 
classified as Arundo and non-Arundo. A total of 180 points (90 of each class) were initially 
created for model verification within training NFCAs. For the initial field-based accuracy 
assessment, 20 non-Arundo classified points and 47 Arundo classified points were evaluated via 
visual confirmation using binoculars or the sUAS for an alternative line-of-sight assessment. 
Visitation to the remaining randomly selected points were limited by landowner access denial 
and availability of safe sUAS launch locations. Once points were validated for true cover class 
(Arundo or non-Arundo), a confusion matrix of the model was organized to evaluate the model’s 
classification accuracy. 
 
OBJECTIVE 2: Expansion Rate Elucidation 
 The completed model in Objective 1 was applied to historic Sentinel-2 imagery of Stage 
2 NFCAs (Figure 1) from 2015, 2018, and 2021 for elucidation of Arundo’s presence and 
regional expansion rate. Years were chosen to encompass the collection history of the satellite as 
it was deployed in 2015 and 2021 will have the most recent imagery. Sentinel-2A imagery 
acquisition and preparation followed the same workflow as described in Objective 1. Anticipated 
error of seasonal and atmospheric differences was mitigated by selecting imagery collection 
dates comparable to the dates of imagery used in the model development. 
 After model application across all years, a 
change detection analysis was performed to identify 
pixels of Arundo establishment (presence) and 
expansion (increase in patch number or average 
patch size). ArcGIS Pro was used to calculate 
classified pixel counts across respective NFCAs. 
FRAGSTATS, an open source, pixel based spatial 
analysis program commonly used for investigation of 
patch dynamics (McGarigal et al., 2023), was used to calculate patch and class metrics with 
outputs like patch area, patch numbers, and common distances between detected patches. The 
program allows for computation specification, like the election to operate on a 4-neighbor or 8-
neighbor pixel rule (Figure 4). For this investigation, we opted to use the 8-neighbor rule for 
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classification of a “patch” as Arundo morphometrics are highly variable and are likely to occur in 
diagonal pixels rather than strictly edge-sharing pixels. Using Stage 2 NFCA mapped models as 
inputs and selecting program parameters results in a summary of various patch and class metrics 
(see Table 6: Class Metrics; Table 7: Patch Metrics). Selected class metrics consisted of patch 
numbers and patch densities. Patch densities are reported as the number of patches per 100 
hectares. A collection of pixels is referred to as a “patch” when they are adjacent or continuous 
based on the elected 8-neighor rule. 
 
OBJECTIVE 3: Spatial Analyses to Identify Associated Landscape Features 
 The completed model in Objective 1 was planned to be used in spatial analysis to 
investigate relationships between landscape features and Arundo populations. Detected Arundo 
from 2022 imagery will be spatially related to key landscape features, such as wastewater 
treatment outfalls and proximity to roads or other built-up areas (Table 3). To accomplish this, 
attribute features were obtained from the respective data source, clipped to our 200m buffer 
extent of primary rivers, and projected to a unified coordinate system (WGS 1984/UTM Z 14N). 
With the approximate size of a given Arundo stand used as the predicted variable, distance to 
each of these features, measured through nearest neighbor statistics, were to be considered in a 
Gaussian Generalized Linear Regression to determine whether individual or combinations of 
landscape features coincide spatially with Arundo establishment. ArcGIS Pro was intended for 
use in this portion of analysis. 

While investigating the landscape features associated with the presence of Arundo was a 
goal of this project, this objective was not completed. Complications arose during the model 
development and accuracy assessment stages of Objective 1. The resulting time limitation led us 
to prioritize addressing primary TPWD desires of Objective 1, creation of the 2022 Arundo 
inventory, and Objective 2, investigation of NFCA specific Arundo expansion. In addition, the 
poor accuracy of the majority of the eastern and western NFCAs made this analysis non-
productive as any landscape feature associations found would likely not be reliable. Prepared 
data files will be provided to TPWD in the event an opportunity for agency completion arises. 
 

Table 3: Examples of landscape features for investigation of correlation to Arundo presence. Landscape features, 
key attributes, and source of data are included for clarity. 

 Landscape Feature Attributes Data Source 

1 Soil Moisture Soil horizon surveys National Cooperative Soil Survey, 
USDA 

2 Flood Risk Relative degree of flood frequency USGS 

3 Soil Nutrients Reported C:N ratios National Cooperative Soil Survey, 
USDA 

4 Nutrient Input 
% Agricultural landcover in NFCA TPWD Ecological Mapping System 
Distance to wastewater treatment 

facilities TCEQ 

5 Anthropogenic 
Effects 

% Urban cover in NFCA National Land Cover Database, USGS 
Distance to urban areas National Land Cover Database, USGS 

Distance to roads TxDOT 

6 Established Arundo % Arundo landcover in NFCA Created in Stage 1 
# Established Arundo stands in NFCA Created in Stage 1 
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Results: 
OBJECTIVE 1 

Initial field-based accuracy assessments yielded an overall accuracy of 71% and a kappa 
value of 0.46 within training NFCAs of SEP and GUAD (Table 4). The overall accuracy 
indicates that 71% of pixels within this training area were correctly classified as Arundo or non-
Arundo. The Kappa coefficient of agreement value of 0.46 indicates that the model has moderate 
agreement compared to chance alone.  
Satisfied with the detection accuracy, the 
Python script of the CART model rules 
was applied to Stage 1 NFCAs with 
ArcGIS Pro (Figure 5a). Arundo is 
reported most frequently along urban or 
suburban areas with intersecting river 
systems, while less developed areas have 
fewer classified pixels of Arundo. 
 Field-based accuracy assessments 
were initially performed in western and 
eastern NFCAs with equalized, randomly 
stratified samples of 60 points per class, 
however, the accessibility of survey 
points limited the success of these multi-week regional assessment trips. To account for this, 
independent computer-based accuracy assessments were instead performed for individual 
NFCAs to validate detection accuracy across a broad, geographically variable area. Computer-
based accuracy assessments were conducted by comparing classified outputs to publicly 
assessable satellite imagery (e.g., Google Earth Pro). For simplicity, West Texas NFCAs of 
Pecos and Devils Rivers were grouped, as were East Texas NFCAs of the Northeast Texas 
Rivers and Southeast Texas River NFCAs. 

Metrics of accuracy validation for individual or paired NFCAs were suboptimal despite 
several iterations of CART rule adjustments (Table 5; Figure 5b; Figure S2). Kappa values for 
the remote accuracy assessment across individual and paired NFCAs failed to reach even 0.10, 
which is interpreted as poor agreement. This led to the omission of most NFCAs from Objective 
2. Future iterations of the predictive mapping methodology may be improved and would 
facilitate a broader area available for expansion rate analysis as detection accuracy improves. 
Our discussion supporting the incorporation of more fine spatial resolution imagery and the 
consideration of regionally based training imagery collection is included later in the discussion 
section for consideration. 

Table 4: Field based accuracy assessment of SEP and 
GUAD training NFCAs. 
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Figure 5(a): 2022 Arundo inventory across Stage 1 NFCAs identified by TPWD as areas of interest. Starred locations are displayed in more detail in Figure 5(b). 
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Figure 5(b): Output examples from West Texas (Girvin, Pecos River NFCA), Central Texas (San Marcos, Guadalupe and San Antonio Rivers NFCA), and East 

Texas (Rockland, Southeast Texas Rivers NFCA). White = non-Arundo Classification. Black = Arundo Classification. 
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Table 5: Confusion matrices of other (not GUAD or SEP) NFCAs. 5(a) belongs to the Lower Brazos, 5(b) to Mid-Brazos, 5(c) to Lower Colorado, 5(d) to San 

Gabriel, 5(e) to the Central Gulf Tributaries. 5(f) and 5(g) grouped Western and Eastern Texas NFCAs, respectively. 
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OBJECTIVE 2 
 ArcGIS Pro’s Change Detection Wizard outputs are summarized in Table 6. Coverage of 
non-Arundo and Arundo classes are reported along with total area of the respective NFCA. For 
visual representation (Figure 6), changes from non-Arundo classification to Arundo classification 
are shown as red, while changes from Arundo to non-Arundo are shown as black against a 
yellow area of interest (AOI) backdrop. The yellow background depicts the buffered river AOI. 
This is an overview from 2015 to 2021 within SEP to capture the range of years. 
 

Table 6: SEP (left) and GUAD (right) expansion calculation (km2). 

    
  

SEP expansion from 2015 – 2018 had a 0.028% gain per year for Arundo cover, though 
this increased between 2018 – 2021 to a 0.54% yearly gain (Table 6). As this area was exiting 
the drought of 2015, this gain was anticipated as Arundo is highly reliant on freshwater 
availability. The overall expansion rate of 0.284% per year within SEP indicates class coverage 
of Arundo increasing. GUAD expansion from 2015 – 2018, on the other hand, experienced a 
0.0000067% loss per year of Arundo cover, shifting to a gain of 0.00033% per year between 
2018 -2021 (Table 6). The initial loss in GUAD may be attributed to a lag effect of drought 
impacts remaining from 2015, though communication with professional contacts at TPWD led us 
to attribute the loss of Arundo in this NFCA at an overall rate of 0.015% per year with TPWD 
management efforts rather than any environmental factors or decreasing Arundo fitness. 

 

2015 2018 2021
Non-Arundo 13.402 13.473 13.123

Arundo 0.001 0.013 0.229
Total Area 13.403 13.486 13.352
%Arundo 0.011 0.095 1.715

0.284% gain per year
Overall Expansion Rate

2015 - 2018 Expansion Rate

2018 - 2021 Expansion Rate
0.028% gain per year

0.54% gain per year

2015 2018 2021
Non-Arundo 39.411 39.495 39.503

Arundo 0.122 0.037 0.087
Total Area 39.533 39.532 39.59
%Arundo 0.003 0.001 0.002

2015 - 2018 Expansion Rate
0.0000067% loss per year

2018 - 2021 Expansion Rate
0.00033% gain per year
Overall Expansion Rate
0.00015% loss per year



FINAL REPORT 

Page 19 of 30 
 

 
Figure 6: Excerpt from Bandera, Texas. Output from SEP 2015-2021 Change Detection Wizard in ArcGIS Pro. 

Red = Non-Arundo -> Arundo 
Black = Arundo -> Non-Arundo 

 

 

Table 7: FRAGSTATS class metric outputs based on 8-neighbor pixel rule. Patch density output to be read as the 
number of patches per 100 hectares. 

 
 

#patches patch density #patches patch density
2015 Arundo 122 0.914 3351 8.477
2018 Arundo 891 6.611 1505 3.807
2021 Arundo 5888 44.125 1885 4.761

#patches patch density #patches patch density
2015 Non-Arundo 10 0.075 35 0.089
2018 Non-Arundo 4 0.030 16 0.041
2021 Non-Arundo 75 0.562 24 0.061

SEP GUAD

SEP GUAD
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Table 8: Summary of FRAGSTATS patch metrics output of annual patch area. Default reporting units are hectares. 

 
 

 FRAGSTAT summarization of class metrics (Table 7) reports number of patches and 
average density of patches across the three years of our expansion rate investigation within Stage 
2 NFCAs AOI. SEP patch numbers increase quickly and consistently, while GUAD patch 
numbers decreased sharply between 2015 and 2018. This seems to have been followed by a 
regain of patch numbers between 2018 and 2021. 

FRAGSTAT summarization of patch metrics (Table 8) reports the average patch areas for 
each year with standard deviations as measures of variability. A patch area of 0.01 hectare = 100 
m2 agrees with our 10 x10 m pixel area of a single, isolated pixel of classified Arundo. With this 
interpretation, most patch area averages across these years of investigation only consist of a 
handful of adjacent, isolated Arundo classified pixels. Large ranges of standard deviations 
indicate a high level of patch size variability, though, attributed with Arundo’s opportunistic 
growth pattern that takes advantage of canopy gaps and bare soils for root establishment. The 
gradual increase in average patch areas for SEP and increasing standard deviation show that 
patches are growing across the landscape with relatively inconsistent area. GUAD average patch 
areas, though, shows an initial decrease followed by a partial regrowth. This pattern suggests a 
die back of Arundo across GUAD that was followed by additional growth in the following years. 
 
  
 
Discussion: 

SEP and GUAD NFCAs, where the model performed acceptably, were visually assessed. 
While there are frequent isolated pixels of Arundo classifications across the landscape, it appears 
as though most Arundo occurrences are present in sub-urban, and likely built-up locations. The 
buildup of sub-urban housing areas is often performed by importing soil from other regions with 
the intent of mitigating the potential for property loss during flood events. Where the AOI of our 
buffered rivers approached city centers (e.g., San Antonio, Bandera, and San Marcos), 
occurrence of Arundo seem to increase in density. This aligns with in-field observations where 
larger Arundo stands were mostly observed along roadsides of well-traveled highways or river 
sections where banks indicated frequent flooding suggested by the absence of established woody 
species and abundance of bare soil patches. This also suggests that in less developed areas 
Arundo is less of a problem and may not warrant as much management action. 
 Though our detection accuracy for the SEP and GUAD area is approximately 71%, there 
are portions of this region that are suspected of inadequate model performance. Most training 
samples were gathered from the eastern extent of SEP and the western extent of GUAD, 
influenced by known Arundo locations from TPWD. During the early stages of the initial model 
development, classifications to the east of Interstate 35 greatly overclassified Arundo. While 

avg. patch area std.dev avg. patch area std.dev
2015 0.012 0.005 1.155 0.364
2018 0.014 0.031 0.024 0.078
2021 0.039 0.089 0.046 0.139

SEP GUAD
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following iterations improved this overclassification, similar overclassification may be 
increasing proportionately with distance from our training locations. 
 Completion of the remote sensing based Arundo inventory of 2022 was not without 
challenges, though, as only SEP and GUAD reached acceptable confidence levels. Initial 
collection of sUAS imagery was complicated by private land restrictions and limited knowledge 
of locations of established Arundo by TPWD. With an estimated 93% of Texas land being 
privately owned and landowners often reluctant to engage in management practices without 
compensation (Kreuter et al., 2006; Texas Parks and Wildlife Department, n.d.), imagery 
collection was restricted to public access roads within a safe flight range of the sUAS. While this 
is permissible by law as air space is not privately owned, members of the field team were 
strongly encouraged to use strategies to prevent negative community interaction that could 
negatively impact TPWD’s Healthy Creeks Initiative efforts for community engagement. The 
goal of this landowner outreach was to encourage landowner involvement, respect landowner 
privacy concerns, and conduct research with transparency. Initial outreach was attempted using 
county appraisal district address records to call or email landowners prior to flights and, if 
contact attempts failed as they often did, the field crew carried and distributed notification fliers 
to landowners. 
 Furthermore, the variation of phenotypic seasonality for Arundo was of noted concern 
during the planning stage. From personal observations, Arundo appears conspicuous from mid-
summer after spring rains, to late fall before multi-day freezes. Arundo’s characteristically large 
inflorescences, visible in sUAS imagery, have been observed from mid-summer to late fall 
before stands senesce. Noting the seasonality of Arundo is valuable in that quality, high-
resolution imagery collection of conspicuous Arundo stands is needed for calculation of Arundo 
specific spectral responses to reduce risk of mixed, or “impure”, pixel values. Other projects 
using remote sensing for species specific detections found significant spatial variability of their 
study species within coarse satellite imagery (Sha et al., 2008; Sharp et al., 2021). For example, 
Sharp et al. (2021) found that the Critical Scale of Variability (CSV) for their focal cyanobacteria 
ranged from 70 to 175 m. CSVs summarize the recommended distance across a landscape 
required between samples to capture independent, representative values of spatial patchiness or 
densities of patches. As the project was working with 300 m coarse resolution satellite imagery, 
high spatial variability of detected cyanobacteria blooms was reported within each pixel. The 
high variability within coarse pixel imagery was suggested to have been the primary limitation in 
creating a modeled algorithm capable of accurate remote detection of cyanobacteria within 
Sharp’s study area. Similar remote sensing-based approaches attributes the complication of 
identifying pure, species-specific SVIs to impure spectral responses, suggesting that high 
resolution imagery is best suited for species-specific remote detection (Cingolani et al., 2004). 
Success of other study’s detection efforts commonly use high spatial resolution imagery for the 
identification of singular or multiple study species, which is commonly referenced for the 
advocation of selecting high-resolution imagery for species-specific detection studies (Hill et al., 
2017; Lass et al., n.d.; Mu et al., 2023). For improved products meant to assist managers, TPWD 
members should advocate for a subscription to a high-resolution imagery acquisition 
organization. Our study was limited by the moderately coarse spatial resolution of 10 m and 20 
m Sentinel-2 pixels that was publicly available, leading us to primarily emphasize 10 m pixels 
and 10 m resampled pixels with >50% Arundo canopy cover. Use of a higher spatial resolution, 
at least sub-10 m, should yield more accurate classification results and will benefit the 
identification of species of interest for TPWD management efforts.  
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In addition to these struggles, Sentinel-2’s spatial resolution of 10 m – 20 m pixels 
resulted in expected mixed pixel values. Mixed pixels consist of “impure” spectral responses 
(example: Arundo and non-Arundo vegetation) and can be difficult to accurately classify (Figure 
7). While adjustments of statistical parameters in the CART analysis were performed across 
several iterations to improve detection accuracy and reduce error, there is no attainable method 
of entirely removing errors attributed to mixed pixels (Boonprong et al., 2017). Use of higher 
spatial resolution imagery is most recommended to avoid this error source (Cingolani et al., 
2004). The errors attributed to mixed pixel values in this study have been captured in the final 
model’s regional accuracy assessment where a detection rate of 71% was accepted. 

Compared to a preceding 
remote sensing study performed 
in 2003 by Everitt et al. (2004), 
our detection rate was 
suboptimal. Everitt et al. utilized 
Quickbird satellite imagery at 2.8 
m spatial resolution for the 
detection of Arundo donax within 
a portion of the Rio Grande 
Valley near Del Rio, Texas. 
Though imagery acquisition costs 
approximately $1900 for 64 km2 
area, this high-resolution imagery 
was successfully manipulated to 
detect Arundo with 83% accuracy 
and a strong kappa of 0.77 using 
false color satellite imagery band 
combinations and a 79% accuracy 
and kappa of 0.724 using true 
color band combinations (Everitt 
et al., 2004). False color refers to using green, red, and near-infrared bands while true color 
combinations consist of a red, green, and blue band combination. Despite having the same focal 
species and performing our studies in the same state, there are several key differences between 
our project methodologies. First, Everitt et al.’s funding allowed for the purchase of 2.8 m high 
spatial resolution imagery, whereas our study emphasized open-access imagery sources. Second, 
different satellite sensors were used. The Quickbird satellite was decommissioned in 2015 after 
experiencing orbital decay – this coincidentally aligns with the launch of Sentinel-2 in 2015, 
which was ultimately selected due to recent and ongoing operation. Third, Everitt et al.’s study 
scope did not evaluate the utility of applying detection rules in a relatively small area to a 
broader, more expansive geographic scale across various ecoregions of the state.  

Finally, we opted to use SVI calculations as a primary detection metric rather than 
spectral combinations of true or false color imagery. Though it is encouraging that more accurate 
detection methods have been documented in this way, more work must be done to improve the 
statewide detection of Arundo across various vegetative communities and soil types using SVIs 
that are more reliable for species-specific remote detection (Xie et al., 2008). 

Application of the trained model to such a large land area was expected to increase 
overall map uncertainty. To reduce this, additional clipping of the study areas focused 

Figure 7: South of Medina, Texas. 2015-2018 Change Detection 
Wizard overlayed, where red pixels denote classified Arundo. Note 
that some pixels contain non-Arundo like herbaceous and woody 

species, as well as developed lands. 
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specifically on banks of non-ephemeral, classified streams and rivers. Similar studies 
investigating the use of remote sensing along river corridors for species specific spectral 
identification, though, have documented increased fragmentation and diminished accuracy with 
use of medium to coarse imagery resolution (Congalton et al., 2002; Gergel et al., 2007; 
Henshaw et al., 2013). Again, this error may be mitigated by using higher spatial resolution 
imagery for investigation, though large maps are often critiqued to overestimate model predictive 
power (Ploton et al., 2020; Tan et al., 2006). For these reasons, the production of regional maps 
for species detection may be in the best interest of any statewide management group for Texas. 

 

  

 

Additionally, Texas’ variable landscape likely complicated accurate remote detection. 
Soil reflectance, largely attributed to soil moisture, is expected to greatly vary between western 
and eastern NFCAs where landscapes shift from arid desert environments to swampy wetlands 
(Texas Almanac, 2021) (Figure 8). While these concerns can be managed to respectively correct 
spatial-temporal discrepancies and spectral overlaps, we acknowledge these as anticipated 
sources of error. After the encountered complications with improving detection accuracy of the 

Figure 8: Land Resource Areas created by Texas Almanac (Texas Almanac Graphic, n.d.). 
Classifications largely based on soil types as sourced from the Natural Resources 

Conservation Service of the U.S. Department of Agriculture. Compare to Figure 4 for 
understanding of focal NFCA coverage. 



FINAL REPORT 

Page 24 of 30 
 

model, we would further recommend collecting training sUAS imagery across multiple regions 
of your study’s scope. Individual models organized by region should yield more accurate results. 
 
Conclusion: 

This project provides a framework for continued remote sensing-based detection methods 
of a conspicuous invasive species of significant habitat management concern within Texas 
NFCAs. Though there were issues with model accuracy, this is the first attempt at creating fully 
remote sensing-based inventory of Arundo along with evaluation of expansion rates within 
Central Texas NFCAs. While we addressed complications encountered and sources of expected 
error, this project does supplement knowledge gaps regarding expansion characteristics of 
Arundo within Central Texas. It is our hope that the methods and recommendations included in 
this report will be incorporated into TPWD’s ongoing Arundo management efforts. Continued 
mapping of the species will provide agencies with a more complete picture of how widespread 
invasions have become within NFCAs, along with how the invasion has spread in this 7-year 
time span. A more robust analysis may stem from this methodology for a more complete 
consideration of influential landscape features contributing to infestations. This will help in 
identifying what biotic and abiotic factors are commonly associated with invasion success in this 
region. Additional landscape features such as adjacency to established Arundo stands, soil 
moisture, and nutrient inputs are acknowledged as influential, and should be incorporated in 
future investigations to elucidate local contributors to Arundo invasions in Central Texas. Upon 
visual inspection, it appears as though Arundo is most concentrated around built-up suburban 
centers and low river crossings prone to flood events. Incorporation of these data into future 
landscape analysis should allow for more accurate prediction of habitats at high invasion risk. 
This should facilitate greater efficiency in priority assignment and implementation of proactive 
management. 
 
Management Implications: 

Our project lays the groundwork for future mapping projects that could lead to significant 
management outcomes for Arundo (e.g., current Arundo project support, future project targeting) 
as well as the conservation implications (e.g., guiding management to restore critical habitat, 
focusing on NFCAs). Our research project focused both on established, problematic infestations 
where restoration is currently ongoing and recent stand expansions or reductions in those areas. 
Though identification of priority NFCAs for management action was not able to be completed in 
this project due to low accuracy of the remote sensing products outside of central Texas, it is 
clear that with the purchase and incorporation of higher resolution imagery and regional specific 
training model development products could be created that would be essential to identify NFCAs 
across Texas where management efforts should be focused.  

Based on TPWD’s goals of controlling Arundo invasion and spread, there remains a need 
to know where successful populations of Arundo are located throughout NFCAs. The land area 
occupied by NCFAs is too large to monitor with boots on the ground and requires a remote 
sensing approach to be able to identify and respond to Arundo invasions. The methods that we 
developed as part of this project lay out a data processing path that could be useful to TPWD in 
the future if higher resolution imagery is available to locate infestations in NFCAs throughout 
Texas. While the landscape factors spatial analysis of this project was unable to be completed, it 
is very likely, based on past studies, that Arundo’s successful invasion across the landscape, both 
in terms of total size of the infestation and rate of patch spread, is due to both biotic (e.g., 
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proximity to other Arundo stands) and abiotic factors (e.g., soil moisture, nutrient inputs, etc.). 
Gaining a better understanding of these factors would allow TPWD to better predict the sites 
where Arundo will establish and more efficiently implement management strategies in priority 
areas. We strongly suggest TPWD invest in both higher resolution imagery and future analyses 
into the landscape features most associated with Arundo dominance. In addition, the inclusion of 
regionally specific training flights with additional personnel and funding availability would 
further enhance the likelihood of being able to accurately identify Arundo at large regional 
scales. 

Though imperfect, our project resulted in the first remote sensing-based inventory of 
Arundo presence within two NFCAs in Texas and clear methodology and operational model for 
TPWD to continue detection efforts in the future with high resolution, commercially available 
satellite imagery.  
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