Analysis of *Prymnesium parvum* blooms in Lake Whitney, Texas

Richard L. Kiesling¹²

¹United States Geological Survey, Water Resource Division, Texas District, 8027 Exchange Drive, Austin, TX, 78754

²Dept. Chemistry & Geosciences, Tarleton State University, Stephenville, TX, 76402

Overview

• Problems:

- Winter-Spring blooms of *Prymnesium parvum* in numerous Texas reservoirs (PK, Granbury, Whitney)
- Frequent blooms of *P. parvum* in the upper Colorado River
- > Associated fish kills in reservoirs, rivers, and fish hatcheries

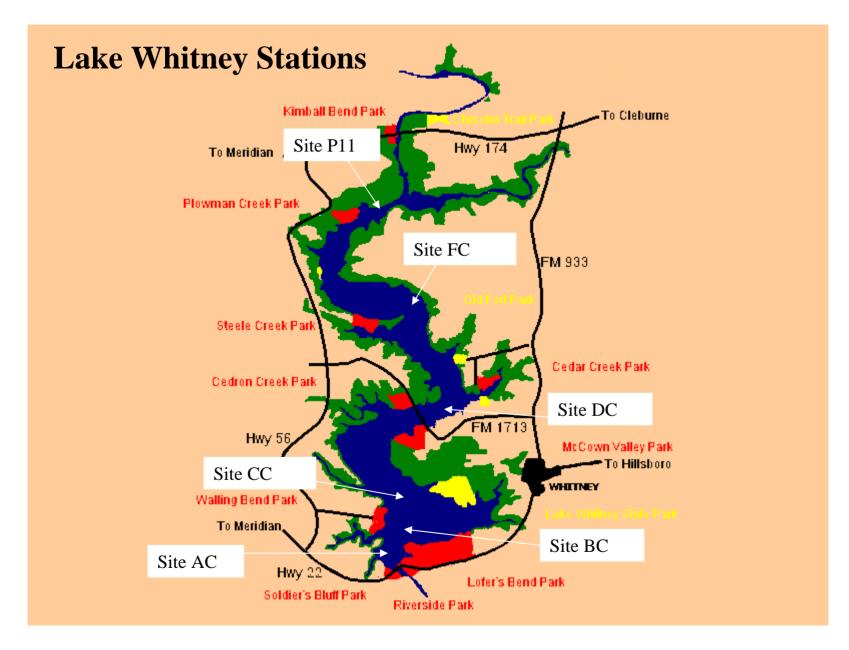
Overview

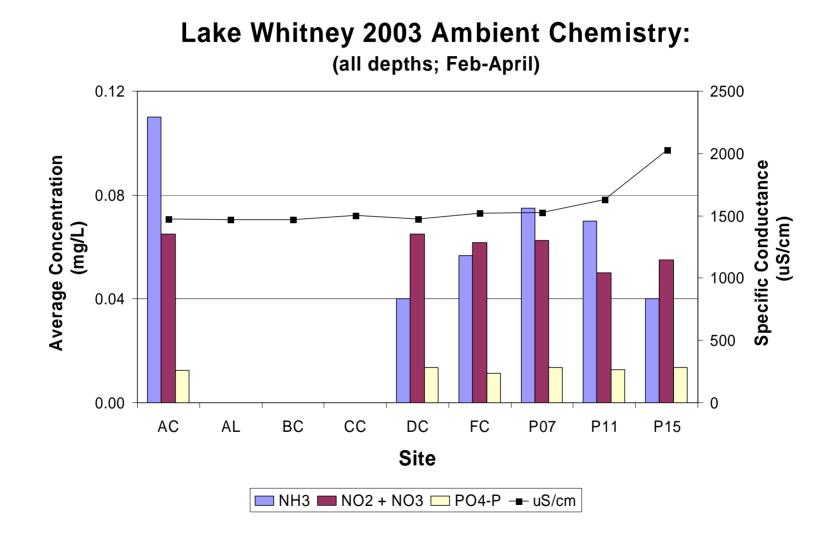
- Questions Identified by Texas HAB Team:
 - What factors control the development of *P*. parvum blooms in Texas reservoirs?
 - What physical, chemical, and biological characteristics trigger the build-up of *P. parvum* populations?
 - > What causes toxin production in *P. parvum*?

Overview

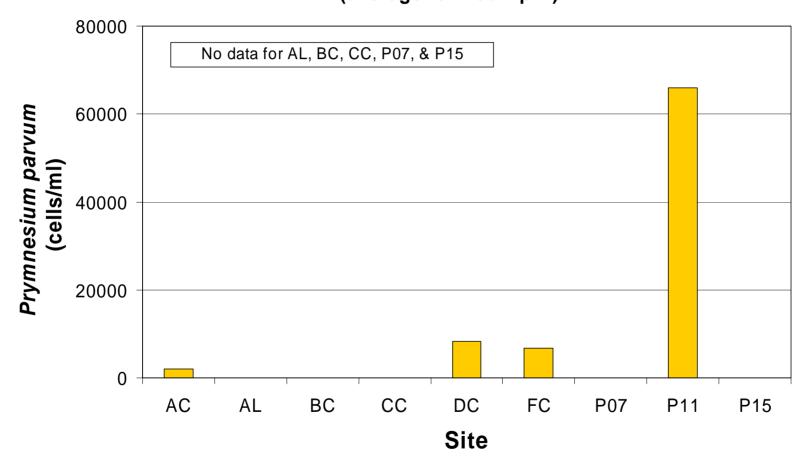
• What factors contribute to *P. parvum* blooms?

➢ Is there a relationship between environmental conditions and development of blooms?

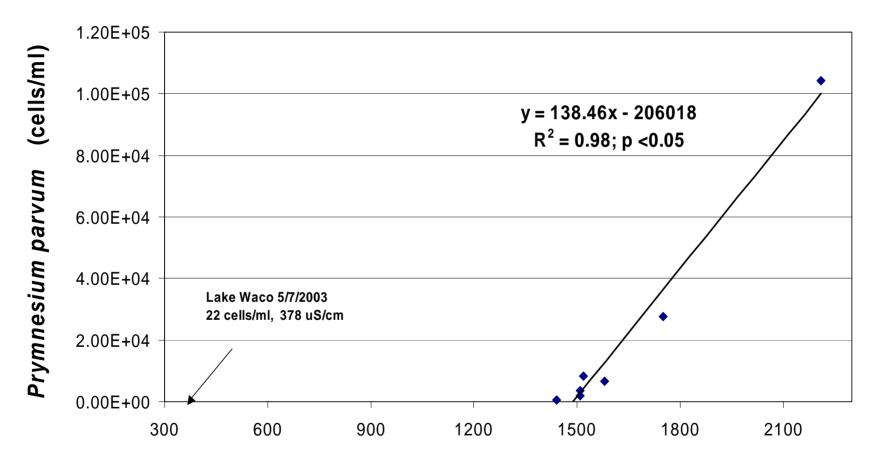

Is this relationship mediated through algal population dynamics or trophic-level interactions?


Approach - proposed studies

- Synoptic sampling of paired reservoirs during *P*. *parvum* blooms
 - Simultaneously assess population densities and the physical and chemical environmental gradients
 - Correlate biological responses to environmental gradients
- Experimental manipulation of important gradients
 - Nutrient enrichment experiments to ID potential limitation
 - Dilution bioassays to estimate importance of grazing
 - Functional response to limiting factors


Pilot Study on Lake Whitney

- Assessment of biological responses to gradients in Lake Whitney
 - Synoptic cruises during the P. parvum bloom to document physical and chemical gradient
 - Experimental nutrient enrichment gradients to assess potential for nutrient limitation of *P. parvum* populations
 - Experimental grazing gradients to assess loss rates (dilution and addition)

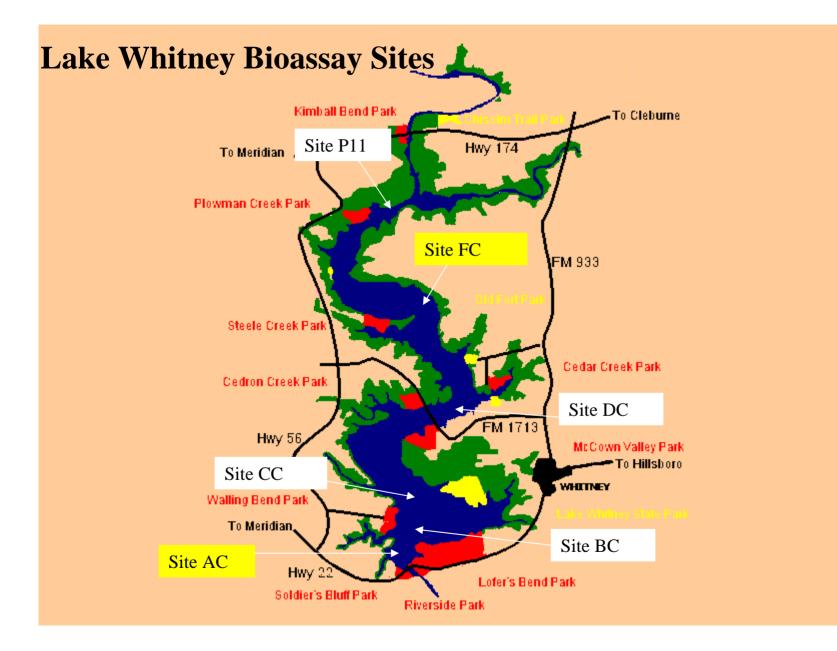

Lake Whitney 2003 *P. parvum* abundance: (average for Feb-April)

Correlations between *P. parvum* densities and selected variables

Lake Whitney P. parvum Surface Densities, Composite Nutrient Data					
	Cond.	NH ₃ -N	$NO_2 + NO_3$	PO ₄ -P	CELLS/ML
Cond.	1.00	-0.49	-0.78	0.36	0.98
NH ₃ -N		1.00	-0.01	-0.46	-0.51
$NO_2 + NO_3$			1.00	0.16	-0.72
PO ₄ -P				1.00	0.50
CELLS/ML					1.00

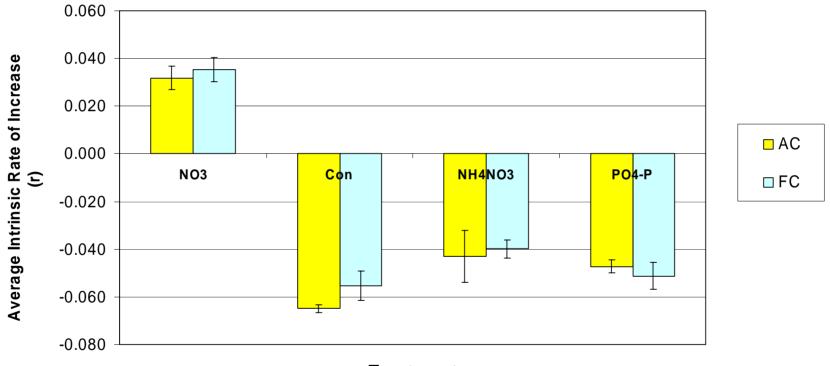
Feb-April 2003 Lake Whitney: surface

Specific Conductance (uS/cm)


Step-wise Multiple-Regression Summary: CELLS/ML						
Surface Densities, Composite Nutrient Data						
	Beta	Beta SE	В	B SE	t(1)	p-level
Intercpt			3907	13932	0.28	0.83
COND	0.52	0.03	73	4	18.53	0.03
NH ₃ -N	-0.12	0.01	-113936	12177	-9.36	0.07
$NO_2 + NO_3$	-0.37	0.02	-1869286	121535	-15.38	0.04
PO ₄ -P	0.32	0.01	1876156	71168	26.36	0.02
R= .99 Adjusted R ² = .99 F(4,1)=5297.0 p<.01030 Std.Error of estimate: 615.29						

Lake Bioassay Methods

- Acclimated growth-rate method using IVF followed by cell counts to estimate daily growth (*r*)
- Treatments included N, P, and Si additions to ambient lake water
- Laboratory incubations at ambient temperature and light lasted 8 days


Lake Bioassay Methods (cont.)

- Five or six replicates per treatment
- Zooplankton removed using 153µm Nitex
- Results recorded using *in vivo* fluorescence
- Growth responses to treatments were calculated using an exponential growth model $(N_t = N_o e^{rt})$
- Replicate estimates of (r) for each treatment

Lake Whitney Nutrient Bioassay 4/29/03				
Site	Treatment	Mean r	SDEV	95% CI
AC	NO_3	0.032	0.006	0.005
AC	Con	-0.065	0.002	0.002
AC	NH_4NO_3	-0.043	0.014	0.011
AC	PO ₄ -P	-0.047	0.003	0.003
FC	NO_3	0.035	0.006	0.005
FC	Con	-0.055	0.007	0.006
FC	NH_4NO_3	-0.040	0.004	0.004
FC	PO ₄ -P	-0.051	0.007	0.006

Lake Whitney Nutrient Bioassay 4/29/03

Treatment

Lake Whitney Nutrient Bioassay 4/29/03: large volume, un-replicated design

Dilution Bioassasy			
Site	Treatment	r	r _{uf}
FC	50%D NO ₃	0.033	0.039
FC	50% D Con	-0.042	-0.037
FC	NO ₃	0.035	0.023
FC	Con	-0.055	-0.063
FC	NH ₄ NO ₃	-0.040	
FC	PO ₄ -P	-0.051	

Original Questions

• What factors contribute to *P. parvum* blooms?

➢ Is there a relationship between environmental conditions and development of blooms?

Is this relationship mediated through algal population dynamics or trophic-level interactions?

Results to date – April 2003 survey of Lake Whitney

- *P. parvum* densities follow in-lake environmental gradient
- *P. parvum* growth is stimulated by nitrate addition during latter part of bloom
- *P. parvum* net growth rates may be sensitive to species interactions

Next steps?

- Continue paired-reservoir assessment between Lake Whitney and Lake Waco add others
- Continue to assess importance of grazing and nutrient limitation for *P. parvum* populations
- Assess toxin levels as a function of P. parvum density, conductivity, and nutrient limitation
- Explore options for Lake Whitney sediment core analysis using *P. parvum* biomarkers

Acknowledgements

- Texas HAB Team, TPWD
- Joan Glass, TPWD
- Dan Roelke, TAMU
- US Army Corps of Engineers
- USGS
- Texas Commission on Environmental Quality

DY III Media Stock Addtions

Nutrient	Final Concentration	
Na ₂ HPO ₄	8 mg/L	
NH ₄ NO ₃	5 mg/L	
NaNO ₃	20mg/L	
Na ₂ SiO ₃ -9H ₂ O	30 mg/L	