A review of fish-killing microalgae: causes, impacts and management with emphasis on *Prymnesium*

Jan Landsberg

Florida Marine Research Institute (FMRI)Fish and Wildlife Conservation Commission (FWC)St. Petersburg, Florida

Etiology of aquatic animal mortalities

- toxic microalgae
- contaminants
- water quality
- pathogens
- fishery by-catch
- mechanical damage
- natural

Toxic/harmful microalgae

- dinoflagellates**
- diatoms
- cyanobacteria
- raphidophytes**
- prymnesiophytes**
- dictyophytes
- chrysophytes

** ichthyotoxic species

HABs and fish kills

global

all habitats

• > 60 ichthyotoxic species known

> 30 species harmful to fish

Fish kills

Harmful mechanisms

- toxins
- enzymes
- reactive oxygen species
- mechanical
- physical
- anoxia/hypoxia
- NH₄ toxicity
- allelopathy
- starvation
- predation

Ichthyotoxic species

- Karenia brevis
- K. mikimotoi
- Karlodinium micrum
- Gymnodinium
- G. aureolum
- Amphidinium spp.
- Cochlodinium spp.

- Pfiesteria piscicida
- P. shumwayae
- Alexandrium monilatum
- A. tamarense
- pulchellum Chrysochromulina spp.
 - Heterosigma sp.
 - Fibrocapsa spp.
 - Prymnesium spp.
 - Chattonella spp.

Impacts of ichthyotoxic species

- public health
- direct mortalities
- indirect losses disease, growth, fecundity, loss of recruitment
- economic
- ecological

Exposure routes

gills – absorption of soluble toxins from water

skin – absorption of soluble toxins from water

 ingestion – direction consumption of cells/ bioaccumulation of toxins

FMRI, FWC

Karenia brevis

St. Petersburg Times

Algae bloom keeps rolling in

Brevetoxins - neurotoxins and hemolysins

Gymnodinium pulchellum (brevetoxins)

natural mortalities of fish and mortalities in aquaculture respiratory irritation in humans

Alexandrium monilatum (hemolysins)

- reduced filtration in oysters and clams
- decreased byssus production in molluscs
- moribund shellfish
- mortality in oysters
- fish mortalities

Reef fish disease - Caribbean, Florida

From Landsberg 1995

- fish mortalities
- ?toxic
- low dissolved oxygen acute gill pathology

Scrippsiella sp.

Diatoms

- physical damage to gills by spines, barbs
- gill lesions, excessive mucus, asphyxiation
- marked edema
- change in blood parameters
- immunosuppression susceptibility to vibriosis

Prymnesium

- at least 3 ichthyotoxic species globally
- primarily P. parvum associated with kills
- brackish water aquaculture systems
- fish exposed to prymnesins in the water
- no transfer of toxins up the food chain or in drinking water

Aquaculture in Israel and Prymnesium

brackish water ponds - closed systems

- polyculture tilapia, carp, silver carp, mullet
- integrated aquaculture recycled irrigation water
- poor water quality build up
- mild temperatures
- ponds enriched with nutrients/vitamins (B1/B12)
- became a problem in 1947
- ideal conditions for Prymnesium

From Sarig 1971

Heavy carp mortality in 5 hectare pond due to *Prymnesium parvum* in Israel

Prymnesium parvum from Israel

Prymnesium impacts

 gill breathing organisms sensitive – larval amphibians, finfish, bivalves

non selective

restricted by habitat type

seasonality

acute effects only – direct through the gills

Prymnesium parvum blooms in Israel

- lack of correlation between blooms, toxin, fish kills
- sporadic fish kills
- requires vitamins B₁₂ and thiamine
- can tolerate freshwater with chloride 250-625 ppm
- no growth below 0.1% salinity
- typically rare in natural habitats

Prymnesium parvum toxin

• hemolytic and ichthyotoxic components toxin synthesized during late stage of logarithmic growth and in early stationary phase intracellular > extracellular biosynthesis and extracellular stability affected by environmental conditions light essential for toxin formation phosphate limitation > toxin production toxin inactivated by change in pH, absorption on various colloids, exposure to UV and short wave light

Prymnesium parvum toxicity

 activity of prymnesin requires cationic cofactors • Na, Mg, Ca and salinity determine toxicity • non toxic by dialysis or cationic exchange column ichthyotoxicity restored on addition of the dialyzate dialyzed cation salts e.g. Ca/Mg restore fish toxicity streptomyin, spermine, detergents (DADPA) enhance toxicity of Prymnesium preparations relative activities of various cations different inverse relationship between toxicity and salinity

Mode of action of *Prymnesium* toxin on fish

Mode of toxin action

fish affected within minutes of exposure

unexposed fish

– trypan blue –

increase in gill permeability

fish exposed to toxin-cation mixture

Mode of toxin action

- increased gill permeability only in conditions in which ichthyotoxin activity is cation activated
- pH dependent -- requires higher pH
- toxic activity inhibited by NaCI
- damage to gill permeability and consequent sensitization to toxic agents is reversible
- intoxication in two stages
- reversible specific damage resulting in the loss of selective gill permeability
 response of sensitized fish to an array of toxins

Fish bioassay

dependence of toxin activity on various cations lead to sensitive bioassay

 assay based on minimal toxin concentration killing Gambusia

 in the presence of 3'3 diaminodipropylamine (DADPA) as a cationic activator

Add 1 ml DADPA (0.003M) + tris buffer (0.02M), pH = 9

28°C

50 ml pond H_2O Death = 1 ITU 1/25 lethal dose in ponds

40 ml distilled H_2O + 10 ml pond H_2O

Death = 5 ITU

1/5 lethal dose in ponds

Recommend treatment

1 ITU = minimal amount of ichthyotoxin/ml that kills fish

50 ml distilled H₂O (control)

Relationship # toxin concentration and time for loss of equilibrium

Testing chemical applications on Prymnesium

- 10 ppm (NH₄)₂SO₄ lytic effect
- low cost, high solubility, ease of dispersion
- Prymnesium lysis > with temperature and pH
- decreased activity of (NH₄)₂SO₄ in winter
- ammonia responsible for cell lysis
- diurnal changes in pH max. at noon
- control added few hours before pH peak
- Cu₂SO₄ not dependent on pH or temp
- (NH₄)₂SO₄ (acid fertilizer) lowers pH
- treatment strategy varies with conditions

Management of Prymnesium blooms in Israel

- proactive monitoring
- fish bioassays
- test for sublethal Prymnesium concentrations
- treat ponds with liquid ammonium
- ammonia concentrates in Prymnesium
- shift in pH > water entry > swelling > cell lysis
- best results at temps < 20°C and pH < 8.5
- aqua ammonia is alkaline and raises the pH

From Sarig 1971		Algicides and Prymnesium		
рН	Temp	Liquid	Ammonium	Copper
	(°C)	ammonia	sulfate	sulfate
>9.0	> 20	-	10-12	-
	17-20	10-12	15	2
	10-17	14	25	2-3
8.6-9.0	> 20	10-12	13-15	-
	17-20	12-14	20	2
	10-17	14	-	2-3
<8.6	> 20	12-13	15-17	-
	17-20	13-14	25	2-3
	10-17	-	-	2-3

per Kg/1000m³ pond water = 1 million liters or 265,000 US gallons

Management strategies

prevent blooms

inactivate or remove toxin

separate fish from blooms

Needs

- dynamics of toxin production in different systems
- determine triggers for bloom formation
- spatial and temporal variations in toxicity
- are *Prymnesium* effects only acute?
- impacts on recruitment?
- economic assessment for management strategies