Rapid tests for the detection of Prymnesium parvum and its toxins

Linda Medlin, Gundula Ellers, Kerstin Toebe, & Katja Kerkmann Bremerhaven, Germany

Why rRNA probes?

- * universally found
- * high target numbers per cell

* variable and conserved regions (can make nested probes for quantification)

Variability Map of Eukaryotic Small Ribosomal Subunit RNA

Make hierarchical rRNA probes

How to design and test a probe

* Amass data bases from rRNA sequences

* use ARB program to design probe

* check probe for possible matches in RDP and Genbank

* test specificity in dot blot (DIG-labelled probe) and in situ (FITC or CY3 labelled probe) tests

* final check with flow cytometer

Change from PFA to ETOH Saline

Change from SDS to Nonidet P-40

With Dimethyl Formamide

Double Staining of Cells to differentiate cells hierarchically

The cells were hybridised with the universal eukaryotic probe (labelled blue) and the genus specific probe for *Prymnesium* PrymGl01A (labelled green). Mixture of E.huxleyi and Prymnesium parvum Analysis of *Alexandrium* strains from European waters using hierarchical probes

EUK1209 DINO B ATAM01 ATNA02 ATWE03 ATME04 ATME05 ATME06

Phylogenetic tree of Alexandrium (18S rRNA)

1.

Identification of A. tamarense in Lab Cultures and Field Samples by Species- & Strain-specific Probes

ATAM01 (species specific)

no probe

ATNA02 (strain specific)

A. tamarense (WE strain)

ain) Field sample (Orkney Islands)

J. Brenner, unpubl. results

Harmful Algal Blooms

Noctiluca

Karenia brevis

@ PJS Franks

Alexandrium tamarense

A.ostenfeldii

Ser.

20 µm

Application & detection methods for rRNA probes

- DNA dot blots
- In situ hybridization / Fluorescence Microscopy
- In situ hybridization / Flow Cytometry liquid & solid
- DNA microchips

Euk 1209

PrymGenus Probe 18S rRNA

Prym Species Probe 28S rRNA

Conclusions

- Specific probes could be made for different groups of phytoplankton (from higher group down to species and strain level)
- More than a dozen probes for toxic algae are available or under development
- It is possible to use the probes with lab cultures and with field samples
- The probes could be used with different kinds of techniques (dot blots, fluorescence microscopy, flow cytometry, DNA chips, etc.)

Platforms for the detection of toxic algae

Linda Medlin, G. Eller, K. Toebe, R.Groben, M. Lange, & K. Kerkmann Bremerhaven, Gernmany 1. Chem*ScanRDI*, a laser based system to quickly analyse FISH-experiments

2. Electrochemical detection of toxic algae via a handhold device

3. Development of DNA-microarrays for monitoring phytoplankton composition

FISH detection of toxic algae via the Chem*Scan, solid phase cytometer*

ChemScanRDI combines fluorescent cell labelling with laser scanning

Electrochemical detection of toxic Algae via a handheld device

A Handheld Device for the Detection of Harmful Algae

Alexandrium tamarenseAlexandrium ostenfeldii

RNA

Helper Electrode

Reference Electrode

Immobilized Oligo

Enzyme Detection Oligo catalyzed

Faryree opupled

Work Electrode

Disposable Sensorchip

Electrochemical Detection of rRNA from *Alexandrium* Species

- ~ 500 ng rRNA have been hybridized to probes
- The probes were directed against ribosomal RNA of A. tamarense, respectively A. ostenfeldii

Concentration Series of Decreasing Amounts of Target

A. Decreasing amounts of
 A. tamarense rRNA
 hybridized
 to a *A. tamarense* probe

 B. Decreasing amounts of a 70 bp Oligonucleotide hybridized to a *A.ostenfeldii* probe

Comparison of cell counts with electrode readings

C. Detection of rRNA in natural samples from the Orkneys islands (column sets 1-4) as compared to rRNA from Prorocentrum mexicanum (column sets 5&6) and hybidized with Alexandrium tamarense probe.

Long term stability of treated sensors

- Sensors have been treated with Avidin (Avidin) and Avidin/Probe (DNA)
- The coated Sensors were then stored at 4°C over the indicated times
- Freshly prepared sensors have been prepared before each hybridization as positve controls for the experimental conditions (Frisch)
- To control the stability of the coated sensors, a hybridization was carried out with a 70 bp oligonucleotide (PC)
- For the negative control (NC) a hybridization was carried out without target-DNA

Alexandrium ostenfeldii K0324 RNA per Cell in Log-, Lag- and Stationary Phase

Development of DNA-microarrays for monitoring phytoplankton composition

Scheme of a DNA-Chip Experiment

ह ई इई इई

Fluorescently labeled ssDNA

> Imobilized DNA (Oligonucleotides, PCR-Fragmentes, cDNA)

Glass-Slide

Scheme of a DNA-Chip Experiment

Fluorescently _____ labeled ssDNA

> Imobilized DNA (Oligonucleotides, PCR-Fragmentes, cDNA)

Glass-Slide

Low Density Chips

- ~ 625 Spots per cm²
- Spotdiameter: ~ 200 μm
- Spotting with needles (A) or piezotechnology (B)

Α.

Pipette Piezo-- element

												_

500 µm

Monitoring Phytoplankton composition with DNA-Chip Technology

Phytoplankton samples

Isolation of genomic DNA from the sample

18S- PCR products

Amplification of the 18S rDNA

Hybridization of the 18S PCR-products with a DNA-Chip that contains probes initially designed for FISH

Probes and Targets used for preliminary Chip-Experiments

Class	Probe	Species
Dinophyceae	DINO B	 Alexandrium tamarense
- H HS Beerles	DINO E12	Prorocentrum minimum
Prymnesiophyceae	PRYM01	 Prymnesium patelliferum
	PRYM02	
	PRYM03	
Chlorophyceae	CHLO01	 Dunaniella salina
	CHLO02	 Pyramimonas obovata
Pelagophyceae	PELA01	 Coccoid pelagophyte
1 lest		 Pulvinaria spec.
Bolidophyceae	BOLI01	 Clone. No. 151 PICODIV
	BOLI02	

Localization of the Class-level probes in the 18S-Sequence

Preliminary results of a DNA-Chip with Class-level Probes

25 Spots

Identification of Phytoplankton on Class-level in a Mix of Laboratory Strains

Genomic DNA 18S-PCR

P. Partae num ententeldings

Hybridisation to DNA-Chip

A1- PC A2- Euk 328 A3- Euk 1209 A4- Chlo 01 A5- Chlo 02 A6- Hetero 01 B1- Boli 01 B2- Boli 02 B3- Prym 01 B4- Prym 02 B5- Prym 03 B6- Pela 01 C1- Pela 02 C2- Dino B C3- Dino E-12 C4- NS 03 C5- NS 04 C6- Pras 04 D1- Bathy 01 D2- Micro 01 D3- Ostreo 01 D4- Crypto B D5- NC D6- PC

AT-PC	CT- Pela 02
A2- Euk 328	C2- Dino B
A3- Euk 1209	C3- Dino E-12
A4- Chlo 01	C4- NS 03
A5- Chlo 02	C5- NS 04
A6- Hetero 01	C6- Pras 04
B1- Boli 01	D1- Bathy 01
B2- Boli 02	D2- Micro 01
B3- Prym 01	D3- Ostreo 01
B4- Prym 02	D4- Crypto B
B5- Prym 03	D5- NC
B6- Pela 01	D6- PC

- Prymnesium parvum
- Alexandrium ostenfeldii
- Threshold for a positive signal: signal/noise ratio ≥ 2

Summary

- The ChemScanRDI is a laserbased system that reduces the time required for FISH due to an automatic analysis, visual recovery of cells with positive signals
- It is possible to detect toxic *Alexandrium* species via a handheld device
- DNA-Chip technology provides the possibility to analyse numerous hybridzations in parallel

Research Needs

- Monitoring of toxic phytoplankton populations is an important scientific issue
- Efficient monitoring requieres quick and reliable techniques
- Currently the identification of species is done mainly by light or electron microscopy
- New tools are needed to be developed which cut down the time necessary for toxic phytoplankton classification
- Methods that involve oligonucleotide probes have the potential to fulfill these needs

People involved in the projects

Dr. Gundula Eller Dr. Kerstin Toebe FISH/ ChemS*canRDI*

Susanne Huljic

Handheld device/ A.ostenfeldii

Dr. Katja Kerkmann DNA-Chip Technology

Dr. Martin Lange Handheld device/ A. tamarense

Dr, Rene Groben Probe Hybridisation optimisation

Dr. Linda Medlin Principal investigator

Rapid Tests for the Detection of Haemolytic Compounds

PrymesiumparvumRL10

number of cells $*10^3$ / well

Alexandriumtamarense COMP115

number of cells $*10^2$ / vell

Allelochemical effects

ELA Tests provide rapid means for detecting haemolytic compounds but these must be coupled with species tests for 100% Reliability