Overview of Texas Hatchery Management of Golden Alga, *Prymnesium parvum*

Greg Southard

TPWD Inland Fisheries

Fish Health and Genetics Lab

A. E. Wood Fish Hatchery

San Marcos, Texas

- Near Wichita Falls, TX
- Lake Diversion
- Water quality
 - Salinity 2-3 ppt
 - Chlorides 1899 mg/L
 - Calcium 296 mg/L
 - Magnesium 63 mg/L
- Fish produced

 striped bass, hybrid striped bass, smallmouth bass, largemouth bass, channel catfish, koi carp, rainbow trout

- February 2001
- Mortality begins
 - Rainbow trout
 - Cause unknown

- March 2001
- Mortality continued
 - Smallmouth bass broodstock
 - Northern largemouth bass broodstock

- Cause of fish mortality?
 - P. parvum
 - Dave Buzan (TPWD-RP) confirmed on 3/15/01

Image by Carmelo Tomas

- April 2001
- Complete mortality
- TEXAS PARKS & - H
- Striped bass fry
 - Hybrid striped bass fry

TPWD Hatchery Water Sources Affected by *P. parvum*

Lake Diversion

Dundee State Fish Hatchery

 Possum Kingdom Reservoir

Possum Kingdom State Fish Hatchery

Goal

To develop strategies to effectively control *P. parvum* to ensure fish production

- Process
 - Understanding P. parvum
 - Literature review and contact experts
 - How do blooms occur?
 - What causes production and release of toxins?
 - What are the best control strategies?

- Research

Develop hatchery management plan

- Hatchery P. parvum Management Plan
 - Identification
 - Monitor densities
 - Monitor toxin levels
 - Pond treatment
 - Prevent dispersal

Identifying P. parvum

- Compound light microscope (≥ 400X)
 - 8 12 μm
 - 2 flagella
 - 1 haptonema

Image by Carmelo Tomas

C-shape or saddle-shape chloroplast

Characteristic swimming patterns

Monitoring P. parvum densities

 Cell density

 Hemacytometer
 Fixation with Lugol's solution

 Count # of *P. parvum* cells per large square on hemacytometer grid

 $-[(A+B+C+D+E) \div 5] \times 10^4 = # cells/mL$

Monitoring Toxin Levels

Bioassay*

- Water sample

- Cofactor (pH 9.0)

- 0.02 M TRIS
- 0.003 M 3,3'-iminobispropylamine

Test organism

• Pimephales promelas (fathead minnow) juveniles

– 28°C for 2 hours

*Dr. Isaac Bejerano - Central Fish Health Lab, Israel

Monitoring Toxin Levels

Bioassay

Mortality determines treatment

sample + cofactor = 1 ITU*
 Low toxicity → no treatment, monitor cell density

1/5 diluted sample + cofactor = 5 ITU
 Moderate toxicity → immediate treatment

sample = 25 ITU

Water is toxic to fish

*ITU = Ichthyotoxic unit (1/25th the lethal dose to fish)

Cell Counts vs. Bioassay Toxicity

- Problems with current applications
 Toxicity variable of cell concentration
 - Both methods are:
 - time consuming
 - labor intensive

 not always reliable as a measure of impending bloom or toxic event

Monitoring of *P. parvum*

- Needs
 - Simpler, quicker, and more accurate method(s) for:
 - Identification
 - Estimating concentration

 Monitoring for impending toxicity

"Dip-test" similar to a litmus test

Epifluorescence image of mixed algal community

Treatments

- Physical methods
 cause lysis
- Chemical methods
 - lysis and/or detoxify

Image by Carmelo Tomas

Physical Treatments

X Sonication (i.e., Aquasonic)

? Ozonation

? Bio-control agents

Ultraviolet Sterilization

Treatments - Physical

- Ultraviolet sterilization
 - Treatment
 - Mean dose of 210 mJ/cm²
 - Intensity of 91.5 mW/cm²

– Results/Conclusions

TPWD fish hauling units

All cells were destroyed; toxicity reduced

- Not suitable for large scale water treatment
- UV-sterilized water is option for hauling unit tank water

Chemical Treatments

Hydrogen peroxide X **X** Acids (HCl and H_2SO_4) ? **Nitrogen : Phosphorous ratio** Potassium permanganate Ammonium sulfate

Copper sulfate & Cutrine[®] Plus

- Potassium permanganate KMnO₄
 - Detoxifying agent
 - Treatment rate = 2 mg/L KMnO₄ above the oxidative demand
 - e.g., oxidative demand (4 mg/L), then treatment rate would be at 6 mg/L KMnO₄

 – KMnO₄ suitable for treating toxic water, but ineffective in *P. parvum* cell lysis

- Ammonium sulfate (NH₄)₂SO₄
 - Most commonly used method by TPWD
 - Effective at 15°C to 28°C
 - Prophylactic treatment maintaining a minimum effective level of un-ionized ammonia (NH₃) = 0.2 mg/L

 Not recommended for low temperatures, low pH, high ambient NH₃, or sensitive fish species or delicate life stages

- Copper sulfate CuSO₄
 - Effective at temperatures <18°C</p>
 - Effective rate dependent upon organic load and alkalinity concentrations
 - Some species and life stages of fish are very sensitive to copper ion in water
 - Not a preferred method

- Harmful to primary and secondary production
- Corrosive to aluminum screens in ponds

- Cutrine[®] Plus
 - Chelated form of copper
 - Research indicated to be safe for rainbow trout and effective at lysing *P. parvum*
 - Used when temperature ≤15 °C
 - Effective treatment = 0.2 mg/L total copper

 Treatments ≥ 0.4 mg/L caused significant fish mortality

Prevent Dispersal

 Hazard Analysis and Critical Control Point (HACCP) Plan for *P. parvum*

– *P. parvum*-free water (UV-treated or well) water used to fill hauling unit tanks

- Production fish rinsed 2X in *P. parvum*-free water

- Water samples from unit checked for alga

Tank is flushed with (UV-treated or well) water if
 P. parvum detected

Achievements

Development of hatchery strategies

Effective control methods

Fish production returned to normal

Challenges

- Needs
 - Efficient and sensitive method(s) to
 - Identify P. parvum
 - Estimate density
 - Monitor toxin levels in water
 - Better algal control methods

 Time-release products that allow longlasting treatments

- Aaron Barkoh
 Dennis Smith
- Tom Dorzab
 Gerald Kurten
- Jason Vajnar
- Joe Warren
- Loraine Fries
 Jake Isaac
 - Greg Southard

