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Abstract. A rough set theory model utilising fuzzy sets
was developed to investigate artificial reef placement based on
fish ecosystem components. The model incorporates consump-
tion estimates and presumed foraging behavior to provide a
rule-based approach to determine how far apart artificial reefs
must be placed to eliminate density-dependent competition for
prey resources. Simulation of the ecosystem parameters and
potential reef distances as triangularly defined fuzzy sets gen-
erates input into the rules. Then, based upon the strength of
belief in a rule, the artificial reef placement location can be
aceepted or rejected as being conducive to consumption at the
reef and foraging behaviour of the species. Ease of utilisation
of the model is highlighted by spreadsheet application to a red
snapper (Lutjanus campechanus) ecosystem in Gulf of Mex-
ico waters off the coastal shelf of Alabama. Implications exist
for similar applications to other ecosystems and different fish
species. Further applications are relevant beyond fish manage-
ment when viewed as a general managerial decision-making
process involving fuzzy sets and simulation.

Keywords: Knowledge management; Rough set theory; fuzzy
logic; fisheries management; ecosystem modeling; science-
based management.

1. Introduction

Previously, knowledge-based systems and uncertainty
problems in ecological research have been limited due to
the difficulty in acquiring knowledge that can be suitably
structured and formalised as well as the essential problem
that uncertainty exists in expert knowledge and ecologi-
cal data. Such uncertainty stems from inaccuracy of data,
inaccuracy of interpolation methods and unreliability of
measurement tools as well as the fact that some measure-
ments are not possible. For example, the number of fish in
a lake can be approximated, but is not quantifiable with-
out allowances for error (Salski, 1992). Uncertainty may

also be due to ambiguity in the linguistic terms (such as
High, Medium, and Low) used to describe a specific situa-
tion, or by missing and/or erroneous data. (See for exam-
ple, Zadeh, 1983; Yager, 1984; Arciszewski and Ziarko,
1986; Bobrow et al., 1986; and Wiederhold et al., 1986.)
In an ecological investigation, perfect knowledge is rarely,
if ever, available since natural systems do not conform to
crisp definitions (Mackinson et al., 1999).

The use of crisp (not fuzzy) sets requires the expert
to establish sustainability thresholds for attributes, mea-
sure the attributes, and determine whether measured
attributes attain or fall short of the thresholds. This
approach assumes that the expert can make a sharp,
unambiguous distinction which is incompatible with the
numerous uncertainties in ecosystem assessments. Accord-
ing to Prato (2005), a fuzzy logic approach overcomes the
conventional approach. Thus, when the components of an
ecosystem are not exactly known, a fuzzy set model can be
built based on expert knowledge even though that knowl-
edge is generally, to some degree, imprecise. Compared to
conventional knowledge-based systems, fuzzy set theory
offers better representation and processing of imprecise
data, and of vague knowledge in the form of linguistic
rules (Salski, 1992).

Rules make associations by relating one event to
another (Kosko, 1992). Heuristic rules expressed in
natural language can be easily explained and under-
stood. In contrast with an equation, comparison of
rules can be made based on knowledge of specific bio-
logical and ecological characteristics providing a pow-
erful tool to compare both scientific and nonscientific
knowledge (Mackinson and Ngttestad, 1998). A fuzzy
rule-based model is characterised by data richness and
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complexity, thrives in a data-poor environment, is adap-
tive such that bettér approximations are possible with
more data, requires relatively few rules to describe the
data, and can provide patches across traditional curve-
based distributions (Mackinson et al., 1999).

Typically, the utilisation of statistical processes
requires probabilities to be estimated and a complete
data set for a population in order to eliminate assump-
tions and uncertainty (Mamdani et al., 1985). Fuzzy logic
has a rigorous mathematical foundation shown not to
contradict but to encompass probability theory (Kosko,
1990), while dealing with uncertainty where ambiguous
terms are present (Articles in Zadeh, 1979, 1981 and
1983 illustrate the use of fuzzy sets). Rough set the-
ory is another method that has been applied to uncer-
tain and ambiguous situations. [Work with rough sets
is illustrated in (Pawlak, 1981a, 1981b, 1982; Mrozek,
1085; Arciszewski and Ziarko, 1986; Fibak et al., 1986;
Mrozek, 1987; Grzymala-Busse, 1988; deKorvin and
Shipley, 1993).] This study builds on these alterna-
tives to statistics, allowing an inferred knowledge from
the uncertainty associated wiat.h ambiguous (i.e., fuzzy)
terms.

Thus, a rough set theory model utilising fuzzy sets
was developed to investigate artificial reef placement as
a function of fish consumption. Rules were developed
according to:

1. consumption output generated by a bioenergetics
model describing food requirements based upon empir-
ically determined growth rates; and

2. artificial reef data predicted from simulating the effect
of foraging, specifically related to food consumption by
fishes on the reefs.

Since all food sources are not available at the reef, the fish
must forage to find resources necessary to accommodate
observed growth rates. If the reefs are too closely spaced,
then the fish are most likely competing for resources. The
fuzzy set model considers distances from maximum to
minimum spacing and determines a strength of belief in
the certainty or possibility of the hypothesised rules for
reef placement. Based upon the strength of belief in a rule,
the artificial reef placement location can be accepted or
rejected as being conducive to consumption at the reef
and foraging behaviour of the fish.
The rule structure considered is of the form:

R = If Percentage of Maximum Consumption at
the Reef is {High, Low} and Foraging Consumption
is {Great, Small}, then Artificial Reef Distance
Should be {Major, Minor}

where Major and Minor reef distances are set within a
1km? area since it has been recommended that spacing
artificial reefs 600-1000m from natural reefs is best to
minimise fish interaction (Grove and Sonu, 1983).

The paper proceeds as follows: Background informa-
tion on fuzzy logic models in the natural sciences and
fuzzy set fundamentals necessary to the reading of the
paper are provided in Sec. 2. Application of the model
is made to reef placement decisions based on red snapper
bioenergetics in the Gulf of Mexico waters off the Alabama
shelf in Sec. 3. Conclusions and implications of the fuzzy
set-based modeling process to further science-based man-
agement decisions are in Sec. 4.

2. Background

2.1. Fuzzy logic models for natural

sciences €4 ecosystems

Recognition of uncertainty in management of natural
resources and ecological decision making has led to
increasing fuzzy-set-based research in these areas. Bosser-
man and Ragade (1982) provided an ecological point of
view to fuzzy set theory which was applied, a year later,
to modeling competition in an ecological system (Giering
and Kandel, 1983). Fuzzy graphs of such ecological sys-
tems have been generated with a computer program devel-
oped for forest succession (Roberts, 1989) representing
the transition of environmental, fuzzy-logic based mod-
els to multispecies trawl fishery. Fuzzy mapping mod-
els have been used to assess the effects of creel limits
and length-based regulations on walleye populations and
angler behaviour in Minnesota (Radomski and Goeman,
1996) and the large-scale ecological system of the Lake
Erie Lakewide Management Plan (Hobbs et al., 2002).

Within fisheries science, it has been determined that
there is a point at which recruitment drops due to over-
fishing (Cushing, 1971; Myers et al., 1995). Recognised
variations in recruitment present one of the most diffi-
cult management problems in the biological assessment
of fisheries (Hilborn and Walters, 1987). To address this
problem, a fuzzy-set based heuristic for analysis of stock-
recruitment relationships and prediction of recruitment
principles recognised the benefit of using a single fuzzy
rule of the form If this, Then that (Mackinson et al., 1999).
Similarly, the uncertainties inherent in ecosystem assess-
ments resulted in a model that developed fuzzy proposi-
tions about ecosystem attributes and strong sustainabil-
ity, and then applied a rule to infer strong sustainability
from fuzzy propositions (Prato, 2005).

Beyond sustainability of an ecosystem, the extine-
tion vulnerabilities of marine fishes to fishing also found
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conventional methods to be inferior to fuzzy models
because population data normally required by conven-
tional methods are unavailable. A fuzzy rule model
related biological characteristics to vulnerability based
on published research, and concluded that the fuzzy
system provided vulnerability estimates that correlated
more closely to actual than models employing classical
logic (Cheung et al., 2005). Advantages to the fuzzy
model were noted in flexibility of input data require-
ments, in the explicit representation of uncertainty,
and in the ease of incorporating new knowledge from
both quantitative studies and qualitative experts’ knowl-
edge (Mackinson and Ngttestad, 1998; Cheung et al.,
2005).

Further evidence of the benefit of fuzzy set based
models to ecosystem management investigated the work
of Liao et al. (1999) which utilised fuzzy classification to
analyse hydroacoustic survey data and concluded that the
fuzzy classification method was useful, particularly in cat-
egorising an upwelling area. How useful as compared to
standard statistical methods was resolved by first utilising
fuzzy methods to categorise data, and then using statisti-
cal processes for analysing the same biomass distribution
and zooplankton composition. These tests concluded that,
for some ecosystem situations, fuzzy methods may be bet-
ter than the traditional methods (Lalli and Parsons, 1993;
Lu et al., 1994).

Of importance to this research study is the use of
fuzzy set based rules with specific applicability to reef
management studies. Meesters et al. (1998) utilised a
fuzzy logic model to predict development of coral reefs
under various levels of environmental stress, but was later
criticised by O’Connor (2000) as being more an expert
system for organising knowledge about reef development.
More recently, Mackinson (2000) developed an adaptive
fuzzy expert system for predicting structure, dynamics
and mesoscale distribution of shoals of migratory adult
herring during different stages of their annual life cycle.
Fuzzy logic was utilised to capture and integrate scientific
and local knowledge into heuristic rules. External factors
such as food and predators, and abiotic attributes such as
light, habitat and oceanographic features were considered
with internal factors such as motivational state, matu-
ration and swimming speed. Thus, heuristic fuzzy rules
captured knowledge about the reef ecosystem contained
in linguistic expressions given by interviewees (Mackin-
son, 2000). )

Use of a fuzzy expert system is an admission that
knowledge is incomplete and uncertain and a recognition
that decisions based on qualitative and sometimes incom-
plete knowledge is better than making decisions without
any understanding (Saila, 1996).

2.2. Fuzzy logic fundamentals

Fuzzy logic addresses the ambiguity of data and uncer-
tainty in decision making, where a fuzzy subset A of a
set X is a function of X into [0,1]. For a brief founda-
tion in the generalised theory of uncertainty, the reader
is referred to Zadeh (2007) and for fuzzy logic in deci-
sion making, the reader is referred to Bellman and Zadeh
(1970), Dubois and Prade (1980), and Freeling (1980).
Fuzzy logic is incompatible with Aristotelian logic since it
allows partial membership in previously defined absolute
sets such as true or false (Bashi, 2006).

22.1.

Fuzzy logic notation begins with a definition of A =

Fuzzy set theory

Ya;/x; to mean that the value of the function A on z;
is ;. The number o;(0 < a; < 1) denotes the degree of
membership of z; in A. In fact, ordinary sets can also be
viewed in this manner when o; = 0 or a; = 1. Another
way to interpret this, is to view a; as the degree of belief
that a possible value of A is z;. '

While a new class of implication operators has been
proposed (Yager, 2004), the more traditionally utilised
fuzzy operations are used in this research. Thus, if A and
B denote two fuzzy sets, then the intersection, union, and
complement are defined by:

AN B = Yv;/z; where v; = Min{a, 3} (1)
AU B = Xv;/z; where v; = Max{a;, 8;} (2)
—A=Zy;/z; wherey;=1—-0 (3)

and it is assumed that B = £3;/z;. For a general discus-
sion of the fuzzy logic concepts above, see (Kaufmann
and Gupta, 1985; Klir and Folger, 1988; Zadeh, 1965;
Zadeh, 1975). Extension principles (see Dubois and Prade,
1980 and Zebda, 1984) often guide the computations when
dealing with fuzzy sets. Letting f be a function from X
into ¥, with Y as any set and A as above, then f can be
extended to fuzzy subsets of X by:

f(A) = Zyupay(y)/y where

upay(y) = Max A(x) (4)

wef~1(y)
Thus, f(A) is a fuzzy subset of Y. In particular, if f is
a mapping from a Cartesian product such as X x Y to
any set, Z, then f can be extended to objects of the form
(A, B) where A and B are fuzzy subsets of X and Y by:

f(A,B) = ET‘;{A,H)(-’-')/Z}
Max }Min{A(I). B(z)}. (5)

zy)ef~ 1z

where

'ii,f(.q,s)(z) = (
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The above formula shows how binary operations may be
extended to fuzzy Sets.

2.2.2.  Fuzzy rough set theory

Rough sets allow inference of knowledge by extraction of
certain and possible rules and a measurement of how much
the values of attributes determine an action (Pawlak,
1981a, 1981b, 1082, 1983, 1985; Grzymala-Busse, 1988).
Fuzzy rough set notation transitions the basic rough set
theory as follows (deKorvin et al., 1992; deKorvin et al.,
1994; Shipley and deKorvin, 1995):

A fuzzy subset A of U is defined by a characteris-
tic function pA : U — [0,1]. The notation ey, /(0 <
a; < 1) denotes a fuzzy subset whose characteris-
tic function at z; is a;. If A and B are fuzzy sub-
sets, A N B, AU B, and -A are defined by Min
{pa(z), pp(z)}, Max {pa(z),pp(2)}, and 1 — pa(z),
respectively, The implication A — B is defined by
~AU B. The corresponding characteristic function is Max
{1 — A(z), B(z)}. (See for example: Zadeh, 1965, 1968,
1973.) .

Two functions are defined as pairs of fuzzy sets that
will be the input into the rule based decision.

I{ACB) = illf Max{1 — A(z), B(x)} (6)
J(A#B) = MaxMin{A(z), B(z)} (7)

where A and B denote fuzzy subsets of the same universe.
The function I(A C B) measures the degree to which A is
included in B and J(A# B) measures the degree to which
A intersects B. If A and B are crisp (non-fuzzy) sets, it
is easy to establish that I(A € B) = 1 if and only if
A C B; otherwise it is zero. Also, in the case of crisp
sets J(A#B) = 1 if and only if AN B # ; otherwise it
is zero. The operators [ and J yield two possible sets of
rules: the certain rules and the possible rules. The highest
level of belief in the certain rules and the highest plausible
belief of the possible rules is based upon selection of the
threshold of acceptance, a.

3. Application

The first step in setting up the model was defining the
linguistic terms in the rule. First, the antecedent of the
rule required defining the High and Low maximum Con-
sumption (p-value), and Great and Small Consumption
(g) from foraging behavior. The Consequent of the rule
relied on Maximum and Minimum reef distances.

3.1.  Fuzzy rule parameter development

Age-based data taken at reef sites were converted to mea-
sures of percent of maximum consumption (p-values) and
the realised weight of food consumed [consumption (g)] for
red snapper, Lutjanus campechanus. The average p-value
determined from bioenergetics modeling was 0.7751
with standard deviation of 0.0698, and mean consump-
tion was 16524.5g with standard deviation of 10514.5¢
(Table 1).

Four scenarios were conducted with a bioenergetics
model to determine reasonable percent maximum con-
sumption and foraging consumption estimates indicative
of an acceptable range of values per age group. Start and
end weights for each run varied depending upon combi-
nations of four measures: the lowest recorded size within
an age group, the average weight of the age group, the
largest recorded weight of the age group, and the aver-
age weight of the subsequent age group. First, the lowest
recorded size at age (cm) was converted to a weight (kg)
(Patterson et al., 2001, Fig. 6) for an age class and used
as the start weight, with the average weight of that age
for the end weight. The second run used lowest recorded
weight as the start weight, but used the largest recorded
weight for that age class (Patterson et al., 2001, Fig. 6)
for the end weight. A third run used the average weight of
that age class as the start weight and the largest recorded
weight for the end weight. Finally, a fourth run used the
average weight for the age class as the start weight and
the average weight for the subsequent age class as the
end weight. From these runs, the maximum and minimum
p-values and consumption values were determined for each
red snapper age group from age 2 through age 10+ Any
p-value, and its corresponding consumption value, greater
than 1.1 was discarded as an outlier and not statistically
usable (Table 1).

The maximum and minimum p-value and consump-
tion (g) per age group from the four runs were used to
define triangular distributions typical of fuzzy set-based
logic. Crystal Ball' was utilised to simulate the trian-
gularly defined distributions through 10,000 runs with
input values of maximum, minimum and most likely as
generated from the four scenarios. For each age cate-
gory. the Maximum function was defined to be triangular
with minimum p-value, but the likeliest was the maxi-
mum p-value which anchored the distribution around the
maximum p-values observed. The Minimum function was
generated from the minimum p-value and the maximum
p-value where the likeliest was selected to be the mini-
mum p-value. In a similar manner, consumption for each

!Crystal Ball is a product of Decisioneering Software. (www.decisioneering.com)
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Table 1. Four scenario runs to determine minimum and maximum p-values and consumption (g).

Age Start weight (g) Final weight (g) Run p-value Consumption (g)
2 133.86 416.60 0.5329 2045.1
133.86 829.42 0.8691 4253.9
416.60 829.42 0.8130 3736.4
Avg (2:3) 416.60 916.20 0.8691 4253.9
3 333.21 916.20 0.7781 3503.1
333.21 2099.06 1.3735 10954.4
916.20 2999.06 1.0206 10340.2
Avg (3:4) 916.20 1738.80 0.7316 5934.4
4 675.97 1738.80 0.8513 6210.9
675.97 4888.85 1.4833 17621.1
1738.80 4888.85 1.0656 16034.9
Avg (4:5) 1738.80 2717.50 0.7306 8581.3
5 829.42 2717.50 1.0121 9534.7
829.42 7465.20 1.8662 28679.0
2717.50 7465.20 1.1557 23779.8
Avg (5:6) 2717.50 3854.20 0.7299 11403.1
6 1430.90 3854.20 1.0285 13153.2
1430.90 9046.98 1.7761 33796.8
3854.20 9046.98 1.1451 28301.7
Avg (6:7) 3854.20 5102.70 0.7499 14677.3
" 1682.60 5102.70 1.1209 17017.4
1682.60 9046.98 1.6195 32089.1
5102.70 9046.98 0.9605 25910.2
Avg (7:8) 5102.70 6420.10 0.7265 17111.5
8 4888.85 6420.10 0.7504 17415.4
488R.85 9046.98 0.9862 26245.6
6420.10 9046.98 0.8280 24072.5
Avg (8:9) 6420.10 T768.70 0.7236 19836.7
9 *6420.10 TT68.70 0.7724 19804.8
6420.10 10844.13 0.9613 30037.9
T768.70 10844.13 0.8434 28057.1
Avg (9:10+4) T768.70 12121.20 0.9292 32296.4
10+ 9046.98 12121.20 0.8074 20554.4
9046.98 12871.52 0.8537 31989.9
12121.20 12871.52 0.6592 27323.2
Avg (104-:15) 12121.20 15161.10 0.7856 34628.6

*: Weight calculation from Patterson et al. (2001) length at age figure yielded a minimum value for Age 9 red snapper equivalent
to maximum value for Age 8 red snapper. Therefore, the average value for Age 8 red snapper was used as the minimum value

for Age 9 red snapper.

age class was defined as a triangular function from mini-
mum to maximum with the likeliest value selected based
on which type of triangular function was being defined.
The values simulated for the Maximum and Minimum
fuzzy-set type triangular distributions provided expected
p-values and consumption for each age group that defined
the linguistic variables (Table 2).

Actual reef distances were not assumed to be con-
stant for any age group but instead, values were ran-
domly generated [0.01,1] km for each of the age cate-
gories through 10,000 simulation runs with Crystal Ball.
Reef distances to represent Major (M) and Minor (N)
were also generated through 10,000 runs using Crystal
Ball simulation software setting up triangular functions
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with a minimum of 0.01km, maximum of 1.00km, and
the likeliest set*at 0.50 km (‘Table 2).

3.2. Belief functions for fuzzy set-
based membership

Belief in membership of the p-values and consumption
generated from the bioenergetics modeling to the linguis-
tic variables in the rule antecedent was accepted to be
the ratio of the value to the simulated range of [Max-
imum, Minimum| for each age class. From Table 2, for
example, Age 2 red snapper p-value of 0.8691 fits entirely
(and surpasses) the simulated maximum of the range, so
membership is 1.00 in High maximum percent consump-
tion at the reef (Note: membership cannot be more than
100%). The ratio of the simulated minimum of 0.8317 to
the Age 2 p-value determines its membership in Low as
0.96. Therefore, membership for Age 2 is:

P — Valueaggz = 1.00/High + 0.96/Low

and based on 4253.9¢g ol consumption at Age 2, for the
defined range of [3517.6,2781.4]:

Consumptiongms = 1.00/Great + 0.65/Small.

In a similar manner, the membership functions were gen-
erated for all age groups (Table 3).

Next, belief in membership was accepted to be the
ratio of the randomly generated distance for an age group
in relation to the Maximum and Minimum reef distance
based on the defined triangular distribution. Again, from
Table 2 for Age 2 red snapper, the randomly generated
reef distance of 0.95 exceeds (i.e., has membership of 1
in) the Maximum simulated reef distance value but the
Minimum is only partially that of the reef distance desig-
nated for that age red snapper. Membership functions for
Age 2 and all other ages of red snapper according to reef
distances are given in Table 4.

Each linguistic variable was then defined from the
membership functions in Table 4. Given the previous
research on reef spacing (Grove and Suno, 1983), and con-
centrating within a 1 km* area, the focus was on defining
the Major (M) distance, not Minor (N). Therefore, Major
distances (0.50 km apart) between reefs as a function of
Age of red snapper is:

M = 1.00/Age 2 + 0.68/Age 3 + 1.00/Age 4
+1.00/Age 5+ 1.00/Age 6 + 0.49/Age 7
+0.91/Age 8+ 1.00/Age 9+ 1.00/Age 10+.

Membership of High and Low p-value and Great and
Small consumption (g) according to the age of red snapper

is as follows:

H =1.00/Age 2+ 0.79/Age 3+ 0.77/Age 4
+0.80/Age 5+ 0.80/Age 6 + 0.82/Age 7
+0.81/Age 8 + 1.00/Age 9 + 1.00/Age 10+

L =0.96/Age 2+ 1.00/Age 3 + 1.00/Age 4
+1.00/Age 5+ 1.00/Age 6 + 1.00/Age 7
+1.00/Age 8 +0.90/Age 9 + 0.92/Age 10+.

G = 1.00/Age 2 + 0.74/Age 3 + 0.67/Age 4
+0.60/Age 5 + 0.63/Age 6 + 0.75/Age 7
+0.85/Age 8 + 1.00/Age 9 + 1.00/Age 10+,

S = 0.65/Age 2 4 0.97/Age 3+ 1.00/Age 4
+1.00/Age 5+ 1.00/Age 6 + 1.00/Age 7
+1.00/Age 8 + 0.74/Age 9 + 0.86/Age 10+.

3.3.

Possibility € certainty of beliefs
in rules

The triangular functions that were defined for each age for
p-value, consumption (g), and reef distance (km) were set
as assumptions with results generated as [ and J func-
tions (Eqs. (6) and (7)) based on a series of simulation
runs as described previously. From (6)

I(AcC B) = i:gf Max{1 — A(z), B(z)}

so the complements and the reef distance functions deter-
mine, for each age category, the maximum degree of belief
in the subset relationship of {IHigh, Low} p-value, {Great,
Small} consumption (g) value and combinations of both
parameters to reef distance.

Continuing the example, based on the simulated val-
ues in Table 2, for Age 2 red snapper with total (1.00)
membership in “High” percent maximum consumption
at the reef, the complement (1—H) would be 0, and the
beliefs in the subset relationship to Major reef distance
(H € M) would be {0, 1.00} with maximum belief = 1.00.
Then, the value of I(H € M) is the minimum belief over
all values for Ages 2 through 10+; 0.49 which occurs at the
randomly generated reef distances of 0.25km for Age 7.
Then, the minimum set for which the funetion /(H ¢ M)
measures the degree to which the p-value (percent max-
imum consumption) is included (i.e., a factor) in Major
reef distance (0.503km m) has belief of 0.49. All other [
functions for Major (M) reef distance are calculated in
this same manner such that:

IHCM)=049 I(HNGC M)=0.74
I(LcM)=049 I(HNSC M)=0.79
I(Gc M)=049 I(LNGc M)=0.74
I(ScM)=049 I(LNSC M)=0.97
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Table 3. Consumption membership functions for red snap-
per by age category.s

Age  Membership for max %
consumption at the reef

Membership for foraging
consumption

2 1.00/High + 0.96/Low 1.00/Great + 0.65/Small
3 0.79/High + 1.00/Low  0.74/Great + 0.97/Small
4 0.77/High + 1.00/Low  0.67/Great + 1.00/Small
5 0.80/High + 1.00/Low  0.60/Great + 1.00/Small
6  0.80/High+ 1.00/Low  0.63/Great + 1.00/ Small
ki 0.82/High + 1.00/Low 0.75/Great + 1.00/Small
8 0.81/High + 1.00/Low  0.85/Great + 1.00/Small
9 1.00/High + 0.90/Low 1.00/Great + 0.74/Small
104 1.00/High + 0.92/Low 1.00/Great + 0.86/Small

Table 4. Reef distance membership functions for
each age class from Crystal Ball simulations.

Age Membership of reef location to Major
and Minor distances

2 1.00/Major + 0.53/Minor
3 0.68/Major + 1.00/Minor
4 1.00/Major 4.0.77/Minor
5 1.00/Major + 0.63/Minor
6 1.00/Major + 0.57/Minor
7 0.49/Major + 1.00/Minor
8 0.91/Major + 1.00/Minor
9 1.00/Major + 0.62/Minor
10+ 1.00/Major + 0.67/Minor

From Eq. (7)., J(A#B) measures the degree to which A
intersects B

J(A#B) = Ma.)iMin{A(:L'), B(x)}

Again using the continuing example at Age 2, p-value
belief is 1.00 in High, and belief is 0.96 in Major reef
distance so that Min {1.00, 0.96} is 0.96 for J(H#M)
or 0.96 belief that High maximum consumption at the
reef for this category intersects with Major reef distance.
The actual J(H#M) is calculated as the maximum belief
from the minimum observed at each category. This value
for J(H#M) is 1.00 which is observed for Ages 2, 9, and
104. This represents 100 percent belief that if percent
maximum consumption is High at the reef then the reef
distances are Major (0.503 k). For the data in Table 2,
again restricting maximum belief to 1, the degree to which
the fuzzy sets for p-value and consumption (food con-
sumed) intersect M are:

J(H#M) = 1.00
J(L#M) = 1.00
J(G#M) = 1.00
J(S#M) = 1.00

J(H N G#M) = 1.00
J(H 0 S#M) = 0.86
J(L N G#M) = 0.96
J(L N S#M) = 1.00

Therefore, for the above [ and J functions determined
from the 10,000 simulation runs in Table 2, the follow-
ing certain and possible rules, respectively, can be written
based upon a designated threshold of acceptance, a.

With a threshold of o = 0.95, a certain rule for major
reef distance is:

I. If realised consumption at the reef (p-value) is Low and
food consumed (g) is Small then reef distance should
be Major (0.5033). (Certain with Belief = 0.97)

at a = 0.75, a certain rule for major reef distance is:

2. If realised consumption at the reef (p-value) is High and
food consumed (g) is Small then reef distance should
be Major (0.5033). (Certain with Belief = 0.79)

Two other rules of lesser certainty are:

3. If realised consumption at the reef (p-value) is High and
food consumed (g) is Great then reef distance should
be Major (0.5033). (Certain with Belief = 0.74)

4. If realised consumption at the reef (p-value) is Low and
food consumed (g) is Great then reef distance should
be Major (0.5033). (Certain with Belief = 0.74)

With a = 0.95, seven of the eight rules show strong belief
in the possibility that reef distance should be 0.503 km.

The above results relate only to one series of sim-
ulated data given in Table 2. As a complete fisheries
management decision making problem, the study was
expanded and artificial reef placement distances were
allowed to vary to test the optimal location; i.e., those
represented by highest certainty and/or possibility of the
rules. Nine scenarios were tested for reef distances from
0.01-0.50 km, to 0.50-0.95km under the assumptions for
Maximum and Minimum consumption at the reef (p-
values) simulated as described previously using the bioen-
ergetics modeling results for each age group.

Belief functions for membership of red snapper
realised consumption at the reef (p-value) as High or Low,
and food consumed (g) as Great or Small were deter-
mined. Certainty of the rules was calculated, again based
on the 10,000 simulation runs for each designated reef dis-
tance. As certainty of any rule approached 100 percent,
the minimum of the range was set (0.50 km) and the max-
imum was allowed to increase incrementally to 0.95km.
The means with standard deviations, ranges, and cer-
tainty based on triangular function assumptions as noted,
are given in Table 5 for each distance scenario. In a sim-
ilar manner, all possibility functions were determined as
given in Table 6.
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The certain and possible rules from the simulation
results in Tablés 5 and 6 would be:

Certain rules: (@ > 0.94)

1. If realised consumption at the reef (p-value) is High,
then reef distances should be 0.25km to 0.95km.
(Belief = 1.00)

2. If realised consumption at the reef (p-value) is Low,
then reef distances should be 0.25km to 0.95km.
(Belief = 1.00)

3. If food consumed is Great, then reef distances should
be 0.25km to 0.95 km. (Belief = 1.00)

4. If food consumed is Small, then reef distances should

be 0.25km to 0.95km. (Belief = 1.00)

. If realised consumption at the reef (p-value) is High
and food consumed (g) is Great, then reef distances
should be 0.25km to 0.95km. (Belief = 1.00)

G. If realised consumption at the reef (p-value) is High
and food consumed (g) is Small, then reef distances
should be 0.25 km to 0.95km. (Belief = 1.00)

7. If realised consumption at the reef (p-value) is Low and
food consumed (g) is Gireat, then reef distances should
be 0.25km to 0.95 km. (Belief = 1.00)

wn

All of the above rules had strongest belief in reef dis-
tances greater than 0.25 kin apart. However, more refine-
ment of distances but with lower belief was observed by
the following:

8. If realised consumption at the reef (p-value) is Low and
food consumed (g) is Small, then reef distances should
be 0.50 km to 0.95 km. (Belief = 0.985)

9. If realised consumption at the reef (p-value) is Low and
food consumed (g) is Small, then reef distances should
be 0.50 km to 0.85 km. (Belief = 0.947)

Possible rules: (¢ > 0.95)

All rules are possible for reef distances 0.01-0.50 kmy;
0.25-0.50km:; 0.35-0.50km; and 0.45-0.50km and 0.50-
0.95 km.

3.4. Rule-based outcomes for reef
placement decisions

High consumption at the reef (p-value) with Great or
Small foraging consumption (g) does not overly influence
reef placement. Similarly, Low p-value and Great con-
sumption (g) does not overly influence reef placement.
The minimum distance that received perfect (100% belief)
strength for any parameter or combination of parameters
was reef placement of no closer than 0.25km. However,
with slightly lesser strength, Low consumption at the reef
(p-value) and Small foraging consumption (g) placed reef

distances at a minimum of 0.50 km with sufficient belief
in the cerfainty of this relationship (belief of 0.985).

The high belief in the possibility of all parameters
tested for each of nine distance scenarios supports that
consumption at the reef {High, Low} and foraging con-
sumption {Great, Small} do appear to relate equally
as possible influences upon reef distances from 0.01 to
0.95 km. However, the overriding factors in reef placement
are Low consumption at the reef (p-value) and Small for-
aging consumption (g) which suggest that reef placement
should be no closer than 0.50 km, preferably 0.50-0.95 km
(belief = 98.5). The possibility results with perfect belief
(1.00) for each range show that the two factors have a
strong degree of relationship to reef locations. Therefore,
the results of the fuzzy set-based rough set modeling pro-
vides evidence that reef locations should be between 0.50 to
0.95 km such that no more than two fit within a 1 km? area.

4. Conclusions: Implications for
Science-Based Management

This research builds on the concept that predicting how
management actions can influence an ecosystem requires
simulation modeling: a classic use of ecosystems models
(Minns, 1992) whether from the perspective of a crisp
or fuzzy research focus. The developed model utilises an
extensive simulation process to generate the distributions
upon which the fuzzy rules can be evaluated. Previous
research on reef placement formed the basis for the rule
specifics, and the definition of the 1km? area consid-
ered. Ultimately, however, the simulation runs provided
the trial-and-error evaluations of the rule antecedent and
consequents. Using a readily available simulation package
that works with Excel, the simulations were easily con-
ducted on a laptop computer. The model can be readily
updated as necessary to react to Sakuramoto’s (1995) sug-
gestion that refinement of the rules is always a consider-
ation, and accumulation of sufficient data upon which to
base the simulation of distributions of ecological variables
should be ongoing.

While Prato (2005) questions whether the use of
fuzzy set based research in ecological settings is practi-
cal at this time, he does ultimately concur with the value
of simulation to science-based management research. A
negative he presents is that fuzzy logic in ecosystem man-
agement requires a higher level of technical expertise than
the conventional method (Prato, 2005). A benefit of the
fuzzy rule-based model presented herein is that while the
technical data must be derived by bioenergetics modeling
or obtained through field research, once available, simu-
lation and subsequent analysis of the belief functions do
not require extensive technical knowledge of the decision
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maker. Indeed, as a spreadsheet applicable modeling pro-
cess, management dedisions can be made in the field.

Prato (2005) further proposes that the worth of fuzzy
logic in ecosystem modeling can only be judged in terms
of whether the benefits exceed the costs. He recommends
that application of fuzzy logic to ecosystem manage-
ment can be enhanced by incorporating results gener-
ated by stochastic simulation models of environmental
processes (Prato, 2005). The fuzzy set-based modeling
process described and applied in this research illustrates
that simulation can be an enhancement to data generation
of parameters in previously unknown ecosystems such as
that for red snapper. In addition, fuzzy membership func-
tions are important since they allow a procedure to be fit
to observational data rather than a costly or impractical
reliance on gathering all data. An advantage is, therefore,
that historical databases that might have to be discarded
if accepting only rigorously quantitative measurements
can be used in fuzzy-set based modeling (Silvert, 2000).

Mathematical models have a place in offering a quan-
titative expression of the differing values and needs, which
can help clarify the underlying issues but cannot alone be
used to solve complex social and political issues (Silvert,
2000). The fuzzy logic model presented in this paper is
a viable means by which ecosystem knowledge and data
can be combined and simulated to provide rule-based
outcomes for fish and other science-based management
decisions.
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