CLOSURE DATES FOR THE 1986 TEXAS GULF SHRIMPING SEASON

by

Lynne S. Procarione and Billy E. Fuls

MANAGEMENT DATA SERIES
No. 25
1990

Texas Parks and Wildlife Department
Fisheries Division
4200 Smith School Road
Austin, Texas 78744
Brown shrimp (Penaeus aztecus) were collected with bag seines along shorelines and with trawls in deeper (>1 m) Texas bay and Gulf of Mexico waters to determine closing and opening dates of the 1986 shrimping season in the Texas Territorial Sea (TTS). The purpose of the closed season was to protect small brown shrimp from fishing pressure until they reached a larger, more valuable size (>112 mm total length) and to minimize waste caused by discarding smaller shrimp during gulf harvest. Based on April bag seine data, the closed season was set to begin 30 minutes after sunset on 10 May. Bay trawl samples collected in June indicated substantial numbers of brown shrimp would be >112 mm by 2 July. Therefore, the recommended opening date was 30 minutes after sunset 2 July, which complied with the 45-60 day closure mandated by the Shrimp Conservation Act of 1959.
ACKNOWLEDGMENTS

Thanks are due to each member of the Texas Parks and Wildlife Department's field personnel for their diligent collection of data, and to the Coastal Fisheries Review Board for editing the manuscript. Thanks are also due to Southeast Area Monitoring and Assessment Program (SEAMAP) participants. This study was conducted with partial funding from the National Marine Fisheries Service (NMFS) under P. L. 88-309 (Project 2-400-R).
INTRODUCTION

Shrimp have one of the highest total exvessel values of all seafood products landed in the United States. Reported shrimp landings were 151.4 million kg (heads-on) with an exvessel value of $473 million in 1985 (U.S. Department of Commerce 1986). Texas shrimp landings in 1985 amounted to 37.3 million kg valued at $161 million (Quast et al. 1988). This is 25% of the weight and 34% of the value of the U.S. shrimp fishery. Shrimp are the most important commercial seafood product in Texas, annually accounting for over 90% of the value and 80% of the weight of all seafood landings. Brown shrimp (Penaeus aztecus) is the most economically valuable species, comprising about 70% of both weight and value of the annual reported landings.

Brown shrimp spawn in the Gulf of Mexico, go through several larval stages and enter bays during February-April as post-larvae (Baxter and Renfro 1967, King 1971). They initially seek shallow nursery areas in the bays where they grow rapidly, migrate to the deeper portions of bays and then return to the gulf in late May or early June at a mean size of about 90 mm total length (TL) (Copeland 1965, Trent 1967, Parker 1970, King 1971). Movement to the gulf through passes occurs mainly at night near the surface in association with ebb tides during the period of maximum tide duration (Copeland 1965, King 1971). Movement ceases during daylight and during periods of flood tides; shrimp remain on the bottom until the next nocturnal ebb tide. Diurnal tides are mixed, with one low per 24-h period of maximum range and two highs and two lows per 24-h period with a minimum range (Collier and Hedgpeth 1950). During the period of maximum range, tides are at maximum duration.

Brown shrimp management in Texas is designed to accommodate all users (bait, small food shrimp and large food shrimp fishermen) while protecting the resource and minimizing waste. The supply of large shrimp is ensured by regulating harvest in bays and simultaneously delaying harvest in the gulf until emigrants reach a larger, more valuable size. Shrimp are managed by the Texas Legislature through the Shrimp Conservation Act of 1959 (State of Texas 1985). This Act established a 45 day closed season in the Texas Territorial Sea (TTS) waters (<16.7 km from shore) from 1 June-15 July each year, but authorized the Texas Parks and Wildlife Commission (TPWC) or Executive Director to adjust closing and opening dates as long as the total closure was ≥45 days but ≤60 days.

The purpose of the annual closure is to protect small shrimp from fishing pressure until they reach a larger, more valuable size (>112 mm mean TL) and to minimize waste caused by discarding smaller shrimp during gulf harvest. Texas has closed its territorial sea for over 20 years, and the statutory 1 June-15 July season has been adjusted eight times (Table 1). The rationale for adjusting closure dates was detailed by Moffett (1967, 1972), Johnson (1976) and Bryan (1983, 1985, 1986 and 1988). Small shrimp were protected in the TTS by closures prior to 1981, but large numbers of small shrimp were still captured and discarded in waters beyond Texas’ jurisdiction (Berry and Benton 1969, Baxter 1973, Bryan et al. 1982).

The Gulf of Mexico Fishery Management Council Shrimp Fishery Management Plan was adopted in 1980 and implemented in 1981 (Center for Wetland Resources 1980). Among other options, the plan called for closure of U.S. waters (≥16.7 to 370.6 km) off Texas to complement the traditional Texas closed season. The
combined closure of Texas and U.S. waters resulted in an estimated increase of $59.5 million in the exvessel value in 1981, $46.2 million in 1982 and $31.7 million in 1983 (Klima and Nichols 1985). The present report documents procedures used to determine the 1986 dates of closing and opening the TTS to shrimping.

MATERIALS AND METHODS

Shoreline samples were collected with bag seines to capture post-larval and juvenile shrimp as they were first recruited to the gear. Otter trawls were used in deeper (>1 m) portions of bays and in the Gulf of Mexico to determine the time and at what sizes shrimp emigrated from the bays.

Bag seines (18.3 m long and 1.8 m deep with 19-mm stretched mesh in the wings and 13-mm stretched mesh in the bag) were used in Galveston, East Matagorda, Matagorda, San Antonio, Aransas, Corpus Christi, and upper and lower Laguna Madre Bays. Ten different shoreline stations were sampled each month in each bay system. Detailed descriptions of sample stations and procedures are reported by Rice et al. (1988).

Otter trawls (6.1 m wide at mouth with 3.8-cm stretched mesh) were utilized in the same bay systems (except East Matagorda) listed for bag seines. Detailed descriptions of sample stations, frequency and procedures are reported by Hammerschmidt et al. (1988).

Trawls, identical to those used in the bays, were used in the TTS during June in five gulf areas: 24.1 km either side of each of the Sabine Pass jetties (Sabine), Galveston jetties (Galveston), Matagorda jetties (Port O'Connor), and Aransas Pass jetties (Port Aransas), and 48.2 km north from the Texas-Mexico border (Port Isabel). Detailed descriptions of sample stations, frequency and procedures are reported by Hammerschmidt et al. (1988). Gulf trawl samples during June were in conjunction with the National Marine Fisheries Service (NMFS) Southeast Area Monitoring and Assessment Program (SEAMAP).

For all gears, the sampling week extended from sunrise Monday through sunset the following Sunday; all samples were collected during daylight hours. All brown shrimp captured in a sample were counted. Total length (mm; tip of rostrum to tip of telson) was obtained from a random sample of up to 19 shrimp in bag seines and up to 50 shrimp in trawls.

Catch was expressed as no./ha (bag seines) and no./h (trawls). The coastwide mean catch (number and length) in bag seines was weighted by the shoreline distance in each bay system (Matlock and Ferguson 1982). Bay trawl data were weighted according to the percentage each bay system's surface area in water ≥1 m deep contributed to the coastwide area. Gulf trawl data were weighted by the number of grids within each gulf sampling area. Mean shrimp lengths were weighted by the total number caught in each sample. Projected growth rates for combined bays were based on the von Bertalanffy model from Parrack (1979). Sexes were assumed equal since shrimp sex was not determined.
The following criteria were used to recommend the 1986 closing of the TTS:

1. Mean number of brown shrimp/ha (transformed to \log_{10}) captured in bag seines during April 1986 was compared to the mean number (+ 2 mean SE) caught during 1978-1980 when the season was closed 1 June. Relatively large numbers of shrimp captured in April were interpreted as indicating good survival and/or early recruitment of post-larvae and, therefore, a probable earlier than 1 June emigration from bays to the gulf.

2. Percentage of samples in which brown shrimp occurred was compared to that observed in previous years. A relatively high percentage of samples containing shrimp was interpreted that shrimp were well distributed along the coast.

3. Mean length of shrimp collected during April was determined. When the number of shrimp in samples indicated early emigration, the von Bertalanffy growth model from Parrack (1979) was used to estimate the date shrimp captured in April would reach a mean length of 90 mm. Growth rate was calculated from 15 April.

4. Periods of maximum duration of ebb tides were determined from National Oceanic and Atmospheric Association (NOAA) nautical charts for Galveston Bay. The date of the period nearest to the date shrimp were projected to reach 90 mm was recommended as the closure date.

The following criteria were used to recommend the 1986 opening of the TTS to shrimping:

1. Mean number of shrimp/ha (transformed to \log_{10}) caught in bag seines during June was compared to previous years' means. The season could be set for the 60 days authorized if substantial numbers (2 SE greater than average since 1979) of small shrimp were still found along shorelines. This would indicate additional recruitment of small shrimp into the bays, thus later movement towards the gulf. The season could be shortened if the mean number of shrimp was 2 SE less than average for 1979-1985. This would indicate less recruitment of small shrimp into the bays, thus earlier movement towards the gulf.

2. Mean number of shrimp/h (transformed to \log_{10}) caught with trawls in the deeper (≥ 1 m) portion of bays in June was compared to previous years' means. These samples reflect those shrimp that will most likely move to the gulf during June-July. If catch rates are similar to or greater than in past years, the date when shrimp are projected to reach a mean length of 112 mm is recommended to be the reopening date. Growth rate was calculated from 15 June.
3. Samples in the Gulf of Mexico within the TTS during June were collected to determine if recruitment into the gulf shrimping grounds had occurred. If recruitment to the gulf shrimping grounds has occurred, mean lengths are obtained and growth rates projected to determine the recommendation for the opening date. The criterion is that a substantial portion of brown shrimp on the fishing grounds average ≥112 mm when the season is opened (Center for Wetland Resources 1980).

RESULTS

Closing Date

Mean catch rates and sizes of shrimp from bag seines during April 1986 indicated an early emigration of brown shrimp to the Gulf of Mexico was probable. The mean number (2.0/ha) of shrimp captured in April bag seines was above the mean (+ 2 mean SE) (1.2/ha) during 1978-1980 (Table 2). The percentage of samples containing shrimp in 1986 was 70% compared to a three-year mean of 28% for 1978-1980 and a five-year mean of 61% for 1981-1985, indicating that shrimp exhibited a wider than normal distribution along the Texas coast.

Mean length of shrimp from bag seines was 58 ± 3 mm in April 1986 (Table 2). Growth calculated from 15 April indicated mean length would be 90 mm on 11 May. Periods of maximum ebb tide duration for Galveston Bay were 10-17 May, 24-30 May, 5-14 June and 20-25 June. The period of maximum ebb tide duration nearest the date that shrimp were projected to reach a mean length of 90 mm began on 10 May. Therefore, the gulf closure began 30 minutes after sunset on 10 May.

Opening Date

The season was opened 30 minutes after sunset on 2 July because most shrimp on the fishing grounds would be ≥112 mm (65 tails/lb) or larger by that date. Bag seine catch rate of shrimp during June 1986 (1.6 ± 0.3/ha) was less than the average (2.2 ± 0.2/ha) of previous years (Table 2). Mean length (68 ± 3 mm) indicated shrimp along shorelines would not reach 112 mm until the end of July or much longer than the authorized closure period.

The mean number of shrimp in the deeper portion of bays in June 1986 (1.2 ± 0.2/h) was similar to the average during June 1982-1985 (1.4 ± 0.1/h) (Table 3). Mean length (96 mm) calculated from 15 June indicated they would be 112 mm on 2 July.

Catch rates and mean lengths of shrimp during June 1986 in the TTS indicated a substantial portion of the shrimp on the fishing grounds would average ≥112 mm when the season opened (Table 4).

Since brown shrimp remaining in the deeper portion of the bays would be 112 mm on 2 July and those already in the gulf would be 112 mm by the end of
June, the recommended opening date was 2 July. This date complies with the 45-60 day closure as mandated by the Shrimp Conservation Act of 1959.

DISCUSSION

Techniques used to establish the closing and opening dates for the gulf shrimping season should be simple because they must be employed in a timely manner. The last possible dates for collection of bag seine samples are 30 April and 30 June for the closing and opening dates, respectively. Calculations must be made and results presented and approved by the TPWD Executive Director who has delegated authority by the TPWC to set season dates. The law requires 72 and 24 h, respectively, for public notice for closing and opening dates (State of Texas 1986). The approved season dates must be published in the Texas Register and public notice and news releases prepared. NMFS is notified so that public notice can be provided concerning the closing and opening of U.S. waters. NMFS must go through their in-house procedure which requires a minimum of 3 days notice prior to the effective opening/closing date.

Fishery managers do not always have the luxury of an extensive data analysis. The time lapse from the last day of data collection through approval and public notice is only a few days. Since sample data are often required to be transmitted by telephone to expedite analysis, there is a possibility of error. Data in the present report are considered preliminary and may change with up-dating of the data base.

This was the fifth year in which the described technique was used to determine season dates; data indicate it has been successful. Adjustments in the technique may be made as more data are collected and analyzed.
LITERATURE CITED

Center for Wetland Resources. 1980. Management plan and final environmental impact statement for the shrimp fishery of the Gulf of Mexico, United States waters. Louisiana State University, Baton Rouge, Louisiana.

Table 1. Modifications to the 1 June-15 July closed Gulf of Mexico shrimping season in Texas by year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Closing Date</th>
<th>Opening Date</th>
<th>Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>17 May</td>
<td>1 July</td>
<td>45</td>
</tr>
<tr>
<td>1972</td>
<td>17 May</td>
<td>1 July</td>
<td>45</td>
</tr>
<tr>
<td>1976</td>
<td>17 May</td>
<td>16 July</td>
<td>60</td>
</tr>
<tr>
<td>1981</td>
<td>22 May</td>
<td>16 July</td>
<td>55</td>
</tr>
<tr>
<td>1982</td>
<td>25 May</td>
<td>14 July</td>
<td>50</td>
</tr>
<tr>
<td>1983</td>
<td>27 May</td>
<td>15 July</td>
<td>49</td>
</tr>
<tr>
<td>1984</td>
<td>16 May</td>
<td>6 July</td>
<td>51</td>
</tr>
<tr>
<td>1985</td>
<td>20 May</td>
<td>8 July</td>
<td>49</td>
</tr>
</tbody>
</table>

a In 1975 the maximum length of the closed season was increased from 45 to 60 days.

b Through 1981 the season closing and opening times were 12:01 a.m. During 1982-85 the closing and opening times were 30 minutes after sunset.
Table 2. Coastwide mean catch rate (no./ha + 1 transformed to log₁₀ + 1 SE) and mean length (mm + 1 SE) of brown shrimp collected with 18.3-m wide bag seines along shorelines in Galveston, East Matagorda, Matagorda, San Antonio, Aransas and Corpus Christi Bays, and upper and lower Laguna Madre during April and June 1978-1986a. ND = no data.

<table>
<thead>
<tr>
<th>Year</th>
<th>Samples/mo</th>
<th>April</th>
<th></th>
<th></th>
<th>June</th>
<th>Samples</th>
<th></th>
<th></th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Samples containing shrimp (%)</td>
<td>Mean</td>
<td>Samples containing shrimp (%)</td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>catch rate (no./ha)b</td>
<td></td>
<td></td>
<td>catch rate (no./ha)d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>42</td>
<td>0.7 + 0.4</td>
<td>33</td>
<td>48 + 3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>42</td>
<td>0.6 + 0.4</td>
<td>31</td>
<td>48 + 2</td>
<td>2.0 + 0.6</td>
<td>74</td>
<td>62 + 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>42</td>
<td>0.4 + 0.2</td>
<td>21</td>
<td>49 + 3</td>
<td>2.4 + 0.3</td>
<td>83</td>
<td>63 + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>42</td>
<td>2.0 + 0.5</td>
<td>76</td>
<td>54 + 3</td>
<td>1.9 + 0.4</td>
<td>69</td>
<td>60 + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>70</td>
<td>1.8 + 0.3</td>
<td>64</td>
<td>52 + 2</td>
<td>2.3 + 0.4</td>
<td>79</td>
<td>68 + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>80</td>
<td>1.4 + 0.4</td>
<td>56</td>
<td>43 + 2</td>
<td>2.3 + 0.3</td>
<td>82</td>
<td>63 + 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>80</td>
<td>1.7 + 0.4</td>
<td>66</td>
<td>57 + 4</td>
<td>2.2 + 0.4</td>
<td>81</td>
<td>69 + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>80</td>
<td>1.4 + 0.5</td>
<td>44</td>
<td>52 + 2</td>
<td>2.4 + 0.4</td>
<td>84</td>
<td>64 + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>80</td>
<td>2.0 + 0.2</td>
<td>70</td>
<td>58 + 3</td>
<td>1.6 + 0.3</td>
<td>62</td>
<td>68 + 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aDifferences in bag seine statistics in this report compared to previous reports are due to updating the data base.
bMean no./ha + 2 SE for 1978-1980 = 1.2/ha
cPercentage of samples containing shrimp 1978-1980 = 28%
dMean no./ha + 1 SE 1979-1985 = 2.2 + 0.2
eMean length (mm) + 1 SE 1979-1985 = 64 + 3
Table 3. Mean catch rate (no. / h + 1 transformed to log_{10} + 1 SE) and mean length (mm + 1 SE) of brown shrimp collected with 6.1-m wide otter trawls in the deeper (≥1 m) water of Galveston, Matagorda, San Antonio, Aransas and Corpus Christi Bays and the upper and lower Laguna Madre during June 1982-1986a.

<table>
<thead>
<tr>
<th>Year</th>
<th>No. / hb</th>
<th>Mean length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>1.4 ± 0.2</td>
<td>92 ± 2</td>
</tr>
<tr>
<td>1983</td>
<td>1.3 ± 0.2</td>
<td>96 ± 2</td>
</tr>
<tr>
<td>1984</td>
<td>1.4 ± 0.2</td>
<td>101 ± 3</td>
</tr>
<tr>
<td>1985</td>
<td>1.4 ± 0.2</td>
<td>90 ± 2</td>
</tr>
<tr>
<td>1986</td>
<td>1.3 ± 0.2</td>
<td>96 ± 2</td>
</tr>
</tbody>
</table>

a Differences in bay trawl statistics in this report compared to previous reports are due to updating the data base.

b Mean no. / h + 1 SE 1982-1985 = 1.4 ± 0.1.
Table 4. Mean catch rate (no./h + 1 transformed to log$_{10}$) and mean length (mm) of brown shrimp collected in five areas of the TTS in the Gulf of Mexico with 6.1 m trawls during June 1986a.

<table>
<thead>
<tr>
<th>Area</th>
<th>n</th>
<th>Mean no./h</th>
<th>Mean length (mm)</th>
<th>Mean length (mm) adjusted to 6/30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabine Lake</td>
<td>16</td>
<td>0.49</td>
<td>105</td>
<td>119</td>
</tr>
<tr>
<td>Galveston</td>
<td>16</td>
<td>0.57</td>
<td>103</td>
<td>116</td>
</tr>
<tr>
<td>Port O'Connor</td>
<td>16</td>
<td>0.78</td>
<td>110</td>
<td>122</td>
</tr>
<tr>
<td>Port Aransas</td>
<td>16</td>
<td>0.95</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>Port Isabel</td>
<td>16</td>
<td>0.50</td>
<td>115</td>
<td>125</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.66</td>
<td>107b</td>
<td>120</td>
</tr>
</tbody>
</table>

aDifferences in gulf trawl statistics in this report compared to previous reports are due to updating the data base.

bWeighted mean length.