Stem Count Index A Habitat Appraisal Method for South Texas

STEM COUNT INDEX

A Habitat Appraisal Method for South Texas

by Jimmy Rutledge, Ty Bartoskewitz and Alan Cain

ACKNOWLEDGEMENTS

The District 8 wildlife staff contributed countless hours of time in the field conducting stem count surveys and providing data for this publication. We would like to acknowledge the efforts by the following Region 4 staff: Bob Carroll, Randy Fugate, Mike Janis, John Huff, Daniel Kunz, Macy Ledbetter, Evan McCoy, Joyce Moore, Robert Perez and Rick Taylor. David Mabie, Len Polasek and Joe Herrera provided valuable support and time to write this publication. T. Dan Friedken, Stuart Stedman, Donnie Draeger, Dr. Charlie DeYoung, Dr. Dave Hewitt and Dr. Tim Fulbright have provided additional support for this publication and associated research. We would also like to thank the numerous reviewers for their constructive suggestions and comments.

Creative Design:

Mike Wallace, Wildlife Interpretive Specialist, Region IV, TPWD Elishea Smith, Wildlife Interpretive Planner/Designer, TPWD

Cover photo: Dave Hewitt Photo to right: John Nelson Photo following page: Dana Wright

© 2008 TPWD PWD BK W7000-1666 (7/08)

TABLE OF CONTENTS

Introduction	6
Deer and Habitat	7
History	9
Stem Count Index	10
Sampling Intensity	13
Conclusion	15
Literature Cited	16
Appendix 1 - Precipitation Zones	17
Appendix 2 - Palatability Classification on Deer and Cattle	18
Appendix 3 - Palatability Classification on Deer Only	20
Appendix 4 - Palatability Classification by Choice	22
Appendix 5 - Stem Count Index Field Data Sheet	. 24

INTRODUCTION

Habitat is the cornerstone of wildlife management. Plant communities, an important component of habitat, are composed of forbs, grasses, woody plants and cacti. Healthy habitats sustain our native wildlife populations. Browsing of woody plants by white-tailed deer and domestic livestock may have tremendous impacts on native habitats in Texas. Excessive browsing may lead to decreased plant vigor, increased disease susceptibility, or decreased reproduction and seedling establishment. Stresses such as these could potentially cause the disappearance of some plant species important to wildlife habitat. Consequently, biologists need a quantifiable method to measure deer and livestock impacts on the vegetation to assist managers in making sound wildlife and ranch management decisions.

TPWD

This is an example of a diverse woody plant community in South Texas.

DEER AND HABITAT

Diet studies of white-tailed deer conducted in South Texas have demonstrated that deer prefer forbs to woody plants and cacti (Drawe 1968, Chamrad and Box 1968, Arnold and Drawe 1979, Everitt and Gonzalez 1981). However, South Texas climates are characterized by frequent droughts, limiting forb availability. While all components of habitat are extremely important, the focus of the stem count index method (SCI) is on the woody plant community, the most dependable component of habitat. Cursory observations are recorded during site evaluations about the presence or abundance of prickly pear, perennial grasses (both native and introduced) and perennial forbs.

Erect Dayflower, a preferred forb

Within the woody plant community, white-tailed deer have preferences; some species are more palatable to deer than others. The most palatable plants receive the most browsing pressure. However, on ranges with low woody plant diversity, less palatable species may receive heavier use. In South Texas, rainfall decreases from east to west (Appendix 1). Shrub palatability and occurrence differs along this gradient (Appendix 2 and 3).

Moderate browsing stimulates the sprouting of lateral buds along stems and increases the number of stem tips available, which is beneficial. However, negative impacts to woody plants occur when over-browsing or severe pruning affects the plant's ability to capture sunlight and convert it to food through photosynthesis, thereby shrinking and weakening the root system.

Plants with weakened root systems are often characterized by dying branches and a relatively unhealthy appearance. During extended periods of drought these plants are most vulnerable to death. When this occurs, the most preferred species of plant communities could be lost, compromising habitat quality.

Supplemental feeding of deer to counteract drought effects is now a common practice. Although some offer opinions suggesting supplemental feeding alleviates impacts of high deer densities by relieving browsing pressure of woody plants, there is mounting evidence to the contrary. Preliminary research results in South Texas indicate that supplemental feeding has relatively little affect on how deer utilize native habitats except for some of the most unpalatable plants, third choice species. In fact, moderate and high deer densities have been shown to reduce forb canopy cover regardless of supplemental feeding, and white-tailed does with access to supplemental food consumed more forbs than those without access to feed. (DeYoung et al 2007). Deer densities appear to be correlated with utilization of native forages regardless of supplemental feeding. Although supplemental feed may be a successful tool in deer management, it does not offset the impacts of high deer densities and does not replace native habitats.

Example of cursory observations:

TPWD

Top photo illustrates Brasil plants with severe hedging.

The coma shrub in the photo to the right represents an unhealthy plant as a result of severe pruning over time.

HISTORY

In the past, cursory habitat evaluation surveys have provided biologists with a limited ability to quantify browsing of woody plants. An early survey method developed by the late Dan Lay, wildlife biologist with the Texas Parks and Wildlife Department (TPWD), measured impacts of deer and cattle stocking intensity by monitoring browse use on plants in East Texas (Lay 1967). Lay's method sampled multiple circular plots within major vegetation types on a property and estimated percent utilization of all woody species with greater than 20 percent occurrence within the plot. The utilization estimates were determined by ocular accounts and were categorized as specific values of 0, 5, 30 and 70 percent use. The categorized values were the midpoints of utilization ranges, 0–10 percent, 10–50 percent, and greater than 50 percent. Lay conducted surveys in the winter to ensure a complete year's growth was sampled and browse use on less palatable species could be detected. Individual species were categorized into first, second and third choice palatability classifications according to preference by deer. Palatability classification of plants were determined by 10 years of monitoring browse use in deer pens and more than 100 browse surveys on East Texas deer range. Once surveys were completed for a particular area, the data were summarized by species and palatability classification. The results provided an average utilization for each palatability class and a quantifiable number to associate with deer only or deer and cattle use on a property. By comparing browse survey results to a stocking intensity table developed by Lay, biologists had an idea of how deer and livestock densities impacted the habitat in East Texas (Table 1). Each ecological region of Texas will have its own unique stocking intensity table.

Palatability Classification	Stocking Intensity			
	Light	Moderate	Heavy	
Browse:	Deer only			
First choice	35	55	60	
Second choice	10	30	40	
Third choice	1	5	15	
Browse:	Deer and Cattle			
First choice	45	55	65	
Second choice	20	35	45	
Third choice	5	10	25	

Table 1: Browse utilization indices by palatability class for East Texas range stocked at different intensities (Lay 1967).

STEM COUNT INDEX

In the mid 1980s, Jim Yantis, retired TPWD wildlife biologist, refined Lay's method by further addressing sampling issues and making the method more applicable to other ecological regions. Yantis' modification of Lay's method is the basis for current TPWD stem count surveys conducted across the state (Yantis, unpublished data). Plant communities and plant response to browsing vary widely across the state; thus, TPWD biologists continue to modify and adjust the survey method to fit the various ecological regions.

Evaluating the use of key species or key areas to determine animal impacts to rangeland habitats is an established concept of range management. This concept dictates sampling sites be selected away from areas of concentrated animal activity, insuring that representative sites of habitat condition are sampled. Examples include permanent feeders, dependable water sources, food plots and areas of recent mechanical treatments such as aeration, roller chopping, rootplowing or prescribed burning. This sampling strategy is the basis for habitat evaluations or rangeland appraisal techniques including the SCI.

Following Lay's method, Yantis selected sampling sites in major vegetation types. However, Yantis' method samples individual species within an area rather than sampling within a circular plot. A minimum of three different plants per species are sampled until 100 stem tips are counted, with no more than 34 stem tips counted on any individual plant. This minimizes the bias of counting a particular plant that has been heavily browsed. All stem tips sampled should be within a deer's reach. One hundred stem tips sampled per species constitutes an **encounter**. Multiple species should be sampled at each site/stop, but encounters for the same species must be at least 30 yards apart, preferably 100 yards if sampled at the same stop. Stem tips browsed only by cattle, deer or exotic ungulates are counted utilizing this technique. Rodent or rabbit bites are not included. Rodent and rabbit bites can be identified by the angle and shape of the cut and the absence of a tuft of plant material.

RODENT BITE Because of their paired incisors, rabbits and rodents have a characteristic 45-degree bite on the stem tip.

DEER OR CATTLE BITE Notice the tuft of plant fiber at the end of the bitten stem tip.

Figure 1

Tim Fulbright

TPWD

The first step of a SCI is to determine soil types, their accompanying ecological sites, and their abundance and distribution across the property. A published soils survey is necessary to locate the different ecological sites that occur on the ranch. If possible, it is best to sample in every significant ecological site.

Upon arrival at the pre-selected site, take note of species distribution and composition. Begin counting stem tips within reach of a deer. Care should be taken to avoid sampling plants along cattle or deer trails. A tally counter is used to count the number of browsed stem tips (Figure 1). Once the more common species have been sampled at a site, observers move to a new site and repeat the sampling process.

Data are compiled and analyzed once sampling on a ranch has been completed. Plants are grouped by palatability classifications of first, second or third choice (Appendix 4). The total number of bites counted is divided by the total number of stem tips counted for each individual species to determine percent of stem tips bitten (Appendix 2 and 3). All species in a palatability class can be averaged to determine percent use. These values are then compared to a stocking intensity table developed for each ecological region (see Tables 1 and 2 for examples). Biologists use this information to make assessments about the health and quality of the habitat. Specifically, these data are used to adjust management recommendations including stocking rates of livestock and deer.

This technique does not measure the amount of forage consumed but serves as an index of the percentage of stem tips bitten. Cooperative long-term research is underway in South Texas to test the technique in habitats with known deer densities, with and without supplemental feed, and across differing climatic conditions. Preliminary data analysis indicates that SCI values are sensitive to differing densities of white-tailed deer (Table 2). Low diversity and preference of species within a palatability class will influence overall values (Table 3).

	Palatability Classes		
Stocking Intensity	1st	2nd	3rd
Low	36	12	6
Moderate	43	19	6
High	45	27	11

Table 2: Browse utilization by palatability classes for known deer densities in 2005. Deer densities: low = 14 acres per deer; moderate = 9 acres per deer; high = 4 acres per deer.

Table 3: Browse utilization by palatability classes for known deer densities in 2005. Granjeno and kidneywood values for each of the density levels are listed separately to illustrate the different results of two first choice species. Deer densities: low = 14 acres per deer; moderate = 9 acres per deer; high = 4 acres per deer. The number of encounters per palatability class is denoted by "n."

		Granjeno		Kidne	ywood
	1st	% use	n	% use	n
Low	36	29	17	46	10
Moderate	43	33	14	54	11
High	45	45	21	-	-

Yantis selected species that had limited variation in estimation of use between different observers. We have determined through numerous staff training sessions, data analyses and staff discussions that there are several South Texas species that cannot be read consistently between observers. First-choice browse species such as guayacan and vine ephedra are examples of plants that should not be included in sampling because of inconsistent results.

SAMPLING INTENSITY

The SCI technique is evolving into a very good range appraisal method for determining stocking intensity of domestic livestock and white-tailed deer, and is designed to provide a quick and quantifiable assessment of habitat. The optimal time period to conduct the evaluation in South Texas is from January through early March. This short window of opportunity limits the number of ranch properties biologists can sample. Four years of stem counts by TPWD staff across 30 counties in South Texas have provided some insight on sampling intensity for this technique. Data presented within this publication were compiled from data collected by Wildlife Division District 8 staff from over 300 South Texas ranches.

On average, an experienced individual can count about 4,000 stem tips or 40 encounters per day. This will vary depending upon habitat diversity, distance or drive time between sampling locations, or the presence of others during the survey. An observer usually samples 500 to 700 stems at each sampling site. Ranches with a diverse assemblage of browse species increase the opportunity for sample size. Diverse ranches in South Texas often have more than 30 woody plant species present. Survey efforts concentrate primarily on browse plants within first and second choice palatability classes rather than all available browse plants. Ranches with a low diversity of browse species as a result of historic land management practices or poor soils generally will have fewer species available for sampling. In this case more second or third choice species may need to be sampled.

Normally, an observer will have one or two encounters of a individual plant species at each stop. Sites with low plant diversity (two to four species) tend to increase the likelihood of multiple encounters with the same plant species at a stop. Ultimately, the number of unique plants available at each stop will determine the number of plant species on your data sheet.

The quality and network of ranch roads and ranch maps influence sample size. A good road system enables easy access to pre-selected sampling sites. Quality maps enable individuals unfamiliar with the ranch to navigate easily and eliminate time between sampling sites. Rough and impassable ranch roads increase the amount of driving time required to reach sampling locations. GPS receivers are useful for recording the location of sampling sites and travel routes to sites for future use.

Ranch personnel often join individuals conducting the SCI evaluation. Additional time is usually spent teaching the stem count technique, identifying plant species or discussing wildlife management practices on the ranch.

Ranch size, diversity of ecological sites, and the number of observers conducting the habitat evaluation determine sample size, **efficiency**, and the number of stem tips counted on a ranch. Ranch size is the major variable affecting the total number of stem tips counted. Ranches exceeding 15,000 acres generally take more than one day to sample with multiple observers to obtain adequate coverage. Large ranches will naturally encompass a greater diversity of soils. Ranches with undis-

turbed habitats and a diversity of soils will yield more available stems to sample because of increased plant species diversity. Multiple observers increase stem sample size and decrease the time required to evaluate a property. Large ranches (>50,000 acres) can be counted using multiple observers with multiple vehicles sampling different areas of the ranch concurrently.

How many stems should you count? Data analyses and field experience have resulted in sample size goals based on property size. Sampling experience indicates ranches up to 3,000 acres should have a minimum sample size of 3,000 stems. Experience also indicates that as sample size increases above 3,000 stems, the results do not change significantly. Small percentile changes in the average number of stem tips browsed for each palatability class are insignificant because of the range of values used in the stocking intensity table (Table 2). Additionally, smaller ranches will have fewer ecological sites and limited opportunities for sampling. A sample size of 3,000 stems, based on an average of 600 stems per stop, requires a minimum of five sampling locations. Most small ranches will not exhibit more than five individual ecological sites.

Thereafter, the approximate number of stems sampled should equal ranch size. For example, a 31,000 acre ranch would have a sample size goal of at least 31,000 stems. Sampling at intensities greater than those mentioned is preferred. However, time constraints and limited personnel have molded the process to be as efficient as possible.

Land managers can use observations in the field

to help establish trends in habitat or individual plant health. The picture on the left illustrates a kidneywood plant with light use in Jim Hogg County. Notice the elongated length of stem tips and shoots, and the production of leafy material within reach of a deer. The picture above illustrates a kidneywood plant with signs of heavy use by deer in Dimmit County.

CONCLUSION

Healthy habitats are the foundation for sustained, long-term populations of all species. It is simply not enough to know which plants deer eat; rather, it is more important to know the effects deer and other browsing animals have on the plant community or habitat. Without a reliable monitoring method, assessment of habitat quality and condition may be noticed at a stage so far advanced that degradation to the habitat has already occurred.

The SCI method used by TPWD appears to be a reliable index of deer density and a relative measure of browsing pressure on South Texas habitats. Use of all woody browse species is generally greatest in high density areas, and the use of second-choice browse species is strongly correlated with deer density (DeYoung et al 2007).

Managers may use SCI survey results combined with harvest data and population survey data to make more reliable assessments of the health of the deer herd and habitat. These informed decisions help maintain healthy habitats to support a diversity of game and nongame species.

LITERATURE CITED

Arnold, L.A. and D.L. Drawe. 1979. Seasonal Food Habits of White-tailed Deer in the South Texas Plains. Journal of Range Management 32:175-178.

Chamrad, A.D. and T.W. Box. 1968. Food Habits of White-tailed Deer in South Texas. Journal of Range Management 21:158-164

DeYoung, C.A., R.W. DeYoung, T.E. Fulbright, and D.G. Hewitt. Effects of Deer Density and Supplemental Feed on Deer Herd Performance. Inside Deer Research Spring 2007 3:1

Drawe, D. L. 1968. Mid-summer Diet of Deer on the Welder Wildlife Refuge. Journal of Range Management 19:212-214.

Everitt, J.H. and C.L. Gonzales. 1981. Seasonal Nutrient Content in Food Plants of White-tailed Deer on the South Texas Plains. Journal of Range Management 34(6):506-510.

Lay, D.W. 1967. Deer Range Appraisal in Eastern Texas. Journal of Wildlife Management 31(3):426-432.

Precipitation zones in the South Texas Rio Grande Plains Ecological Region.

Palatability classification of woody plants in three rainfall belts on DEER and CATTLE ranges in south Texas from 2001–2004. The number of stem tips sampled is denoted by "n".

Common Name	Scientific Name	(n)	% Bitten
American Beautyberry	Callicarpa americana	1200	49
Texas Kidneywood	Eysenhardtia texana	3200	41
Evergreen Yaupon	llex vomitoria	1300	38
Hogplum	Colubrina texensis	2400	28
Granjeno	Celtis pallida	7900	19
Brasil	Condalia hookeri	4800	9
Desert Yaupon	Schaefferia cuneifolia	2300	7
Texas Persimmon	Diospyros texana	3100	6
Blackbrush	Acacia rigidula	2300	5
Twisted Acacia	Acacia schaffneri	1900	5
Agarito	Mahonia trifoliata	1000	1

Average Annual Rainfall 22–34 inches

Average Annual Rainfall 18–22 inches

Common Name	Scientific Name	(n)	% Bitten
Texas Kidneywood	Eysenhardtia texana	24600	49
Coma	Sideroxylon celastrinum	10400	42
Southwest Bernardia	Bernardia myricifolia	10000	41
Cedar Elm	Ulmus crassifolia	2400	38
Littleleaf Sumac	Rhus microphylla	1200	32
Granjeno	Celtis pallida	45800	28
Live Oak	Quercus virginiana	4600	28
Colima	Zanthoxylum fagara	16300	23
Huisache	Acacia minuta	3100	21
Tasajillo	Opuntia leptocaulis	3100	20
Brasil	Condalia hookeri	27900	18
Guajillo	Acacia berlandieri	24100	18
Hogplum	Colubrina texensis	16800	18
Catclaw Acacia	Acacia greggii	4200	17
Cenizo	Leucophyllum frutescens	19400	16
Ebony	Pithecellobium ebano	1000	12
Lotebush	Ziziphus obtusifolia	9600	12
Blackbrush	Acacia rigidula	33600	9
Desert Yaupon	Schaefferia cuneifolia	23000	9
Twisted Acacia	Acacia schaffneri	18300	9

Texas Persimmon	Diospyros texana	30400	8
Evergreen Sumac	Rhus virens	1700	7
Wolfberry	Lycium berlandieri	5800	7
Narrowleaf Forresteria	Forestiera augustifolia	1100	5
Whitebrush	Aloysia gratissima	1600	5
Green Condalia	Condalia viridis	1900	3
Agarito	Mahonia trifoliata	1200	2
Mesquite	Prosopis glandulosa	5000	2

Average Annual Rainfall 18–22 inches continued

Average Annual Rainfall 14–18 inches

Common Name	Scientific Name	(n)	% Bitten
Coma	Sideroxylon celastrinum	21700	51
Live Oak	Quercus virginiana	2700	49
Texas Kidneywood	Eysenhardtia texana	24700	48
Cedar Elm	Ulmus crassifolia	2100	41
Huisache	Acacia minuta	2000	37
Southwest Bernardia	Bernardia myricifolia	1700	35
Granjeno	Celtis pallida	72200	35
Wright Acacia	Acacia wrightii	3800	33
Four-wing Saltbush	Atriplex canescens	1800	30
Colima	Zanthoxylum fagara	8900	30
Cenizo	Leucophyllum frutescens	39200	28
Littleleaf Sumac	Rhus microphylla	3900	26
Guajillo	Acacia berlandieri	44400	26
Brasil	Condalia hookeri	18800	21
Palo Verde	Parkinsonia texana	1700	21
Ebony	Pithecellobium ebano	1800	19
Hogplum	Colubrina texensis	25700	19
Catclaw Acacia	Acacia greggii	2900	18
Blackbrush	Acacia rigidula	68200	14
Twisted Acacia	Acacia schaffneri	49800	14
Lotebush	Ziziphus obtusifolia	33800	13
Texas Persimmon	Diospyros texana	33300	12
Desert Yaupon	Schaefferia cuneifolia	43900	11
Green Condalia	Condalia viridis	6700	8
Wolfberry	Lycium berlandieri	3600	8
Narrowleaf Forresteria	Forestiera augustifolia	1900	7
Whitebrush	Aloysia gratissima	3100	6
Mesquite	Prosopis glandulosa	1300	5
Amargosa	Castela erecta	4000	2

Palatability classification of woody plants in three rainfall belts on DEER ONLY ranges from 2001–2004. The number of stem tips sampled is denoted by "n".

Average Annual Rainfall 22–34 inches

Common Name	Scientific Name	(n)	% Bitten
Texas Kidneywood	Eysenhardtia texana	2100	40
Granjeno	Celtis pallida	6500	21
Hogplum	Colubrina texensis	1800	17
Brasil	Condalia hookeri	3500	16
Lotebush	Ziziphus obtusifolia	1200	15
Texas Persimmon	Diospyros texana	3200	9

Average Annual Rainfall 18-22 inches

Common Name	Scientific Name	(n)	% Bitten
Coma	Sideroxylon celastrinum	3900	49
Texas Kidneywood	Eysenhardtia texana	13300	48
Southwest Bernardia	Bernardia myricifolia	5800	46
Colima	Zanthoxylum fagara	5400	30
Woolly Bucket Bumelia	Bumelia lanuginosa	3800	26
Live Oak	Quercus virginiana	4100	26
Granjeno	Celtis pallida	21700	25
Hogplum	Colubrina texensis	13900	23
Four-wing Saltbush	Atriplex canescens	1200	22
Littleleaf Sumac	Rhus microphylla	1800	20
Brasil	Condalia hookeri	9500	17
Desert Yaupon	Schaefferia cuneifolia	12300	11
Catclaw Acacia	Acacia greggii	1900	10
Guajillo	Acacia berlandieri	19300	10
Cenizo	Leucophyllum frutescens	14700	9
Blackbrush	Acacia rigidula	24000	8
Lotebush	Ziziphus obtusifolia	3500	8
Twisted Acacia	Acacia schaffneri	7100	8
Texas Persimmon	Diospyros texana	20400	5
Green Condalia	Condalia viridis	1700	4
Wolfberry	Lycium berlandieri	3000	4
Agarito	Mahonia trifoliata	2300	3

Common Name	Scientific Name	(n)	% Bitten
Texas Kidneywood	Eysenhardtia texana	20800	49
Coma	Sideroxylon celastrinum	12600	47
Southwest Bernardia	Bernardia myricifolia	1100	44
Woolly Bucket Bumelia	Bumelia lanuginosa	7600	32
Granjeno	Celtis pallida	44900	32
Colima	Zanthoxylum fagara	4200	27
Hogplum	Colubrina texensis	12500	22
Brasil	Condalia hookeri	10000	21
Wright Acacia	Acacia wrightii	1700	20
Cenizo	Leucophyllum frutescens	26300	19
Catclaw Acacia	Acacia greggii	2300	17
Guajillo	Acacia berlandieri	31500	17
Twisted Acacia	Acacia schaffneri	31200	13
Blackbrush	Acacia rigidula	49700	12
Lotebush	Ziziphus obtusifolia	19700	11
Texas Persimmon	Diospyros texana	15700	11
Desert Yaupon	Schaefferia cuneifolia	25100	10
Green Condalia	Condalia viridis	3600	10
Narrowleaf Forresteria	Forestiera augustifolia	1100	7
Wolfberry	Lycium berlandieri	1700	4
Amargosa	Castela erecta	1400	3
Knifeleaf Condalia	Condalia spathulata	1500	3

Average Annual Rainfall 14–18 inches

Palatability classifications of white-tailed deer browse plants in the South Texas Rio Grande Plains Ecological Region. Mast not included in palatability classification.

Common Name	Scientific Name	1st Choice	2nd Choice	3rd Choice
Cedar Elm	Ulmus crassifolia	Х		
Coma	Sideroxylon celastrinum	Х		
Four-wing Saltbush	Atriplex canescens	Х		
Granjeno	Celtis pallida	Х		
Guayacan	Guajacum angustifolium	Х		
Manzanita	Malpighia glabra	Х		
Southwest Bernardia	Bernardia myricifolia	Х		
Sugar Hackberry	Celtis laevigata	Х		
Texas Kidneywood	Eysenhardtia texana	Х		
Vine Ephedra	Ephedra antisyphilitica	Х		
Anacahuita	Cordia boissieri		Х	
Anaqua	Ehretia anacua		Х	
Blackbrush	Acacia rigidula		Х	
Brasil	Condalia hookeri		Х	
Catclaw Acacia	Acacia greggii		Х	
Cenizo	Leucophyllum frutescens		Х	
Chomonque	Gochnatia hypoleuca		Х	
Colima	Zanthoxylum fagara		Х	
Guajillo	Acacia berlandieri		Х	
Hog Plum	Colubrina texensis		Х	
Huisache	Acacia minuta		Х	
Little Leaf Sumac	Rhus microphylla		Х	
Live Oak	Quercus virginiana		Х	
Lotebush	Ziziphus obtusifolia		Х	
Palo Verde	Parkinsonia texana		Х	
Ratany	Krameria ramosissima		Х	
Retama	Parkinsonia aculeata		Х	
Snake Eyes	Phaulothamnus spinescens		Х	
Tenaza	Pithecellobium pallens		Х	
Texas Ebony	Pithecellobium ebano		Х	

Common Name	Scientific Name	1st Choice	2nd Choice	3rd Choice
Twisted Acacia	Acacia schaffneri		Х	
Woolly Bucket Bumelia	Bumelia lanuginosa		Х	
Wright Acacia	Acacia wrightii		Х	
Agarito	Mahonia trifoliata			Х
Allthorn	Koeberlinia spinosa			Х
Amargosa	Castela erecta			Х
Coyotillo	Karwinskia humboldtiana			Х
Creosotebush	Larrea tridentata			Х
Desert Yaupon	Schaefferia cuneifolia			Х
Green Condalia	Condalia viridis			Х
Honey Mesquite	Prosopis glandulosa			Х
Knifeleaf Condalia	Condalia spathulata			Х
Mountain Laurel	Sophora secundiflora			Х
Narrowleaf Forestiera	Forestiera augustifolia			Х
Shrubby Blue Sage	Salvia ballotiflora			Х
Texas Persimmon	Diospyros texana			Х
Whitebrush	Aloysia gratissima			Х
Wolfberry	Lycium berlandieri			Х

Stem Count Index Field Data Sheet.

								Sol	uth T	еха	s Bro	owse	Sur	vey														
Ranch Name:										Coul	∩ty:										Dat	 Ö						
Observer:						Ъ	S Filo	e Nan	.e.								Ľ	at:					Long	÷				
Note: An ENCOUNTER is an encounte has different encounters. Encounters fo	er on a trans or different s	ect of a pla	nt or sn / be clo	nall gro se togi	oup of ether,	plants but en	with a counte	t least rs for t	100 liv he sar	e tips ne spe	within cies m	reach c ust be	of a dec at leas	er. Wi st 30 y	thin th ards a	is sens part (p	ie eacl referat	n plant bly 100	specie	si .								
		n = total	qunu	er of	ENCO	INUC	ERS.			-		Count	mnu	ber of	bites	, ber	100 gi	owing	g tips	for ea	ach sp	ecies	for e	ach e	ncour	iter.		
8	BROWSE	T = total	qunu	er of	bites	for al	enco	unter	, i			Log b	ites/1	00 tip	sfor	each	encol	unter I	nder	colur	nns 1	-25 be	low,	by sp	ecies.			
PLANT SPECIES F	RATING 1, 2, or 3)	% Use T/n	2	-	-	7	e	4	5	9	7	œ	б	6	7	1		4	<u>ع</u>	11	18	19	20	21	22	23	24	25
					0																					·		
			0		0																							
			0	_	0																							
			0		0																							
			0		0																							
			0		0																							
			0																									
			0		0																							
			0		0																							
			0		0																							
			0																									
			0		0																							
			0	_	0																							
			0		0																							
			0	-	0																							
			0	-	0											_	_											
			0	-	0												_											
			0	_	0													_										
			0	-	0												_											
Herbaceous cover per 100 steps			0		0										_													
					Г																							Γ
SUMMARY BY BROWSE RAT	DNI	% Use	٢	⊢		õ	nme	lts:																				
#1 Browse Species			0		0																							
#2 Browse Species			0		0																							
#3 Browse Species			0																									
Deer & Cattle Range	Deer Only	Range																										

4200 Smith School Road • Austin, Texas 78744

www.tpwd.state.tx.us

TPWD receives federal assistance from the U.S. Fish and Wildlife Service and other federal agencies. TPWD is therefore subject to Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, in addition to state anti-discrimination laws. TPWD will comply with state and federal laws prohibiting discrimination based on race, color, national origin, age, sex or disability. If you believe that you have been discriminated against in any TPWD program, activity or event, you may contact the U.S. Fish and Wildlife Service, Division of Federal Assistance, 4401 N. Fairfax Drive, Mail Stop: MBSP-4020, Arlington, VA 22203, Attention: Civil Rights Coordinator for Public Access.

Dispersal of this publication conforms with Texas State Documents Depository Law, and it is available at Texas State Publications Clearinghouse and/or Texas Depository Libraries.